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Professor Charles M. Newman



Preface

This three-volume set, entitled Sojourns in Probability Theory and Statistical
Physics, constitutes a Festschrift for Chuck Newman on the occasion of his 70th
birthday. In these coordinated volumes, Chuck’s closest colleagues and
collaborators pay tribute to the immense impact he has had on these two deeply
intertwined fields of research. The papers published here include original research
articles and survey articles, on topics gathered by theme as follows:

Volume 1: Spin Glasses and Statistical Mechanics
Volume 2: Brownian Web and Percolation
Volume 3: Interacting Particle Systems and Random Walks

Our colleague Vladas Sidoravicius conceived the idea for this Festschrift during
the conference on Probability Theory and Statistical Physics that was hosted on 25–
27 March 2016 by the NYU-ECNU Institute of Mathematical Sciences at NYU
Shanghai. This conference brought together more than 150 experts to discuss
frontier research at the interface between these two fields, and it coincided with
Chuck’s 70th birthday. After the conference, Vladas approached various of Chuck’s
colleagues with invitations to contribute. Papers flowed in during the Fall of 2016
and the Spring of 2017. The Festschrift suffered delays in 2018, and then on 23
May 2019, Vladas passed away unexpectedly. Following discussions in June 2019
with NYU Shanghai and Springer Nature, we offered to assume editorial
responsibility for bringing the volumes to completion.

We gratefully acknowledge Vladas’s investment in these volumes, and we
recognise that his presence in our community worldwide will be sorely missed. We
offer our thanks to Julius Damarackas (NYU Shanghai) for his detailed preparation
of the articles in these volumes.

Chuck has been one of the leaders in our profession for nearly 50 years. He has
worked on a vast range of topics and has collaborated with and inspired at least
three generations of mathematicians, sharing with them his deep insights into
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mathematics and statistical physics and his views on key developments, always
leavened with his acute and captivating sense of humour. We wish him and his
family many fruitful years to come.

July 2019 Federico Camia
Geoffrey Grimmett

Frank den Hollander
Daniel Stein
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5 SFI External Professor, Santa Fe Institute,
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Abstract. In the introduction to this volume, we discuss some of the
highlights of the research career of Chuck Newman. This introduction is
divided into two main sections, the first covering Chuck’s work in statis-
tical mechanics and the second his work in percolation theory, continuum
scaling limits, and related topics.

Keywords: Spin glasses · Replica symmetry breaking · Pure states ·
Ground states · Metastate · Edwards–Anderson model ·
Fortuin–Kasteleyn · Random cluster representation · FK percolation ·
Nature vs. nurture · Deep quench · Riemann hypothesis · Lee–Yang
theorem · deBruijn–Newman constant · Percolation · First passage
percolation · Critical exponents · Continuum scaling limit · Normal
fluctuations · SLE · CLE · Ising field theory · Brownian web

1 Equilibrium and Nonequilibrium Statistical Mechanics

Chuck has devoted a substantial portion of his research career—and made
foundational advances—to the investigation of statistical mechanical systems,
both homogeneous and inhomogeneous, elucidating both their thermal behavior
in equilibrium and their nonequilibrium dynamical evolution following a deep
quench. Here we briefly review only a few of his most important contributions,
beginning with his papers on equilibrium thermodynamics.

c© Springer Nature Singapore Pte Ltd. 2019
V. Sidoravicius (Ed.): Sojourns in Probability Theory
and Statistical Physics - I, PROMS 298, pp. 1–38, 2019.
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2 F. Camia and D. L. Stein

1.1 Thermodynamics of Disordered Systems

In this section we focus on three areas to which Chuck has contributed heavily,
all largely focused on the thermodynamic structure of short-range spin glasses in
finite dimensions. These are: general principles of pure state organization (using
the metastate approach); multiplicity/non-multiplicity of pure and ground states
in realistic and non-realistic models; and presence or absence of a thermodynamic
phase transition in sufficiently high dimensions.

General Principles of Pure State Organization. In the mid-1990’s there were
(and as of this writing, still are) two leading (and very different) scenarios
for the thermodynamic structure of short-range spin glasses: the many-state
mean-field replica symmetry breaking (RSB) scenario put forward by Gior-
gio Parisi and co-workers [177,178,180,236,237] and the two-state droplet-
scaling picture introduced by McMillan, Bray and Moore, and Fisher and
Huse [41,42,94,97,175]. Given the analytical intractability of short-range spin
glass models, studies relied (and continue to rely) largely on numerical simu-
lations (for a sampling, see [21,32,33,35,36,48,63,71,80,125,139–141,151,168–
173,181–183,189,233–235,245,274,284]). The actual pure state structure that
would—or could—result from the application of RSB to short-range spin glasses
had not been studied in depth; people were mostly looking for numerical evi-
dence (often using spin overlap functions) of the signature features of RSB,
in which (1) the thermodynamics is characterized by a mixed thermodynamic
state decomposable into a countable infinity of pure states of varying weights
within the mixed state; (2) the spin overlap distribution of these pure states is
characterized by non-self-averaging (over the coupling realizations) in the ther-
modynamic limit; and (3) the pure states are ordered hierarchically, in that
their relative distances satisfy the ultrametric property (reviews can be found
in [33,180,223,243,244,267]). This set of properties taken together at face value
was called the “standard SK picture” in [214–216,223].

One of the distinguishing features of Chuck’s work with one of us (DLS) on
this problem was the use of rigorous mathematical techniques in an area where
they had been seldom used before (and perhaps rarer still, where they were used
to resolve—or at least sharpen understanding of—open physical questions). In
the earliest foray on this problem [210], it was shown that the presence of dis-
tinct multiple pure states led to “chaotic size dependence”: an infinite sequence
of finite-volume Gibbs states, generated using boundary conditions chosen inde-
pendently of the couplings (e.g., the standard periodic, free, or fixed boundary
conditions), would not converge in the limit to a single thermodynamic state.
However, one could still generate a thermodynamic state by appropriate aver-
aging procedures, and if there were many pure states, this would be a mixture
as required by RSB. A surprising conclusion then followed: no matter how the
state was constructed (as long as it satisfied basic requirements, such as mea-
surability), the main features of RSB were incompatible with each other. That
is, short-range spin glasses could not support the standard RSB picture in any
finite dimension.
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This then led to the question, is there any scenario that is mean-field-like,
and that can be supported in a mathematically consistent fashion in short-range
spin glasses? In order to answer this question, the tool of the metastate was intro-
duced in [213–215,223]. (It was soon proved in [216] that this construction was
essentially equivalent to an earlier construct introduced by Aizenman and
Wehr [10].) Just as in spin models a thermodynamic state is a probability mea-
sure on spin configurations, the metastate is a probability measure on the ther-
modynamic states themselves. Although it can be used for any thermodynamic
system, it is most useful (perhaps even essential) when dealing with systems
with many competing thermodynamic states, providing an elegant means of
connecting the behavior observed in finite volumes with the (infinite-volume)
thermodynamics. (In homogeneous systems, the connection between the two is
straightforward, but is anything but straightforward if many pure states exist.)
Because of this, its significance and usefulness extend well beyond spin glasses
alone (see, for example, [152,153]).

Using the metastate, a “maximal” mean-field picture was constructed [213,
214,223] that avoided the inconsistencies of the standard RSB model (leading
to the moniker “nonstandard RSB model”). In a series of publications, Newman
and Stein (NS) proved that if there are multiple spin glass pure/ground states
in finite dimensions, then there must be an uncountable infinity of them [224]. In
order to arrange them in an RSB-like fashion, there must then be (more formally,
the metastate must be supported on) an uncountable set of distinct mixed ther-
modynamic states, each one of which is supported on a countable infinity of pure
states with varying weights. Roughly speaking, in a given large finite volume,
one would observe a single one of these mixed states, which appear with prob-
abilites assigned by the metastate. Ultrametricity would hold among the pure
states within a single mixed thermodynamic state, but not in general between
any three pure states chosen arbitrarily from the metastate itself. Moreover, the
meaning of non-self-averaging would change, from averaging over different cou-
pling realizations to (roughly speaking) averaging over different volumes for fixed
coupling realization. This picture, based on what remains logically possible based
on self-consistency as determined by rigorous arguments, was recently shown by
Read [244] to follow from a field-theoretic approach of direct application of RSB
techniques to short-range spin glasses.

In very recent work [12] with Louis–Pierre Arguin, a new set of thermo-
dynamic identities—connecting pure state weights, correlation functions, and
overlaps—was derived, again using rigorous arguments. It was shown using
these relations that pure state weights within a single mixed thermodynamic
state consisting of infinitely many pure states (if such a thing exists) are dis-
tributed according to a Poisson–Dirichlet process—exactly as derived much
earlier [76,179,249] for the RSB solution to the infinite-range Sherrington–
Kirkpatrick [258] spin glass.

So, looking at the larger picture, this body of work used rigorous argu-
ments to greatly narrow down the set of possibilities for the organization of
pure states in spin glasses (if in fact there are multiple pure states). It is impor-
tant to recognize, as this work emphasizes, that a priori, there are many possible
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many-state pictures; having many pure states is not synonymous with RSB. In
fact, the RSB scenario is quite special, having an enormous amount of structure.
One of the conclusions of the work briefly summarized above is that if there are
many pure states in short-range spin glasses, then (regardless of dimension) there
must be an uncountable number, and if they appear in nontrivial mixed thermo-
dynamic states (each comprising a countable infinity with given weights), then
the only possibility is the RSB one (as understood within the “nonstandard”
picture). This is a strong conclusion, and is based on rigorous arguments.

Of course, none of this addresses the actual question of whether the RSB
picture (at this point, it’s no longer necessary to refer to the “nonstandard RSB
picture”) actually occurs in short-range spin glasses in any finite dimension.
In [215,223,267], it was argued that this is unlikely. The arguments are based on
a few rigorous results: the invariance of the metastate with respect to changes
of boundary conditions [215], and important differences in the behavior of edge
disorder chaos in infinite-range and short-range models, as pointed out by Chat-
terjee [65]. (We note that the argument claiming that metastate invariance is
incompatible with RSB has been criticized in [244].) Perhaps more compelling
is a nonrigorous argument based on pathologies arising from coupling strengths
in infinite-range spin glasses scaling to zero with the number of spins, coupled
with the randomness of coupling signs [222,267]. However, the issue remains
unresolved as of now.

While the body of work described above has led to the ruling out of an
enormous number of possible scenarios, it has also led to the introduction of
new ones. A very natural and (so far) viable picture, introduced and investigated
in [213–215,223] and called the “chaotic pairs” picture, arises naturally from the
metastate approach. Chaotic pairs is a scenario that, like RSB, has uncountably
many pure states in the (periodic boundary condition, for specificity) metastate,
but they are organized much more simply than in RSB, with a simple, self-
averaging overlap structure that is identical (in any finite volume) to that of
droplet-scaling. In chaotic pairs, thermodynamic states are a trivial mixture of
pure states, each consisting of a single pure state and its global flip, each with
weight 1/2 in the mixed thermodynamic state. However, there are uncountably
many of these thermodynamic states, each one comprising a pure state pair
different from all the others.

For completeness, we should mention a fourth picture, introduced indepen-
dently by Palassini and Young [235] and Krzakala and Martin [151] and some-
times referred to as the “TNT” picture. Here excitations above the ground state
have boundaries with zero density in the edge set (like droplet-scaling, and unlike
RSB and chaotic pairs) but whose energies do not scale as some increasing func-
tion of the volume (like RSB, and unlike droplet-scaling and chaotic pairs). While
this last picture does not specify how many pure/ground states there are, it was
argued in [221] that it is most naturally consistent with two-state pictures. If so,
that leaves us with two potential many-state pictures for the short-range spin
glass phase (RSB, chaotic pairs) and two two-state pictures (droplet-scaling,
TNT). Which of these holds for short-range spin glasses, and in which dimen-
sions, remains a fundamental open problem in the mathematics and physics of
the statistical mechanics of disordered systems.
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Multiplicity of Pure and Ground States in Short-Range Spin Glasses. The work
described in the previous section clarified and restricted the ways in which pure
states could be organized in short-range spin glasses; it did not address the actual
number of pure or ground states of the spin glass phase. It should be noted
that—from a logical standpoint at least—this question cannot be considered
without answering several deeper ones: namely, is there a thermodynamical phase
transition at nonzero temperature in any finite dimension, and if so, does the low-
temperature phase break spin-flip symmetry (so that pure states come in spin-
reversed pairs, as described in the previous section)? The first of these questions
will be addressed in the following section; for now we will assume, in accordance
with a good deal of numerical evidence [22,33,118,124,134,232] that above some
lower critical dimension there is a phase transition at a dimension-dependent
positive temperature to a spin glass phase with broken spin-flip symmetry (for
those readers interested in more offbeat possibilities, see [224]). For specificity
we restrict the discussion in this section to spin glasses described by the nearest-
neighbor Edwards–Anderson model [88] on the Euclidean lattice Z

d and with
i.i.d. couplings taken from the normal (Gaussian) distribution with mean zero
and variance one.

The main question, if pure states come in pairs, is whether there is only a sin-
gle pair, as in droplet-scaling and (probably) TNT, or else uncountably many, as
in RSB and chaotic pairs. (We will always refer in this section to infinite-volume
pure or ground states. Definitions and constructions can be found in [223].)
Aren’t there other possibilities? Probably not: a countable number, either finite
or infinite, was rigorously ruled out for RSB as noted earlier, and there exists
strong evidence that it cannot occur for chaotic pairs either. The number of
pure/ground states, of course, could in principle be dimension-dependent, or
even temperature-dependent for fixed dimension. But we’re a long way at this
point from addressing these questions. (We confine our discussion to the so-
called incongruent ground/pure states [95,96], which differ from each other by
positive-density interfaces, and are generated by coupling-independent boundary
conditions [221,223].)

Until recently the only dimensions in which the answer was fully known were
one dimension (a single pure state at all positive temperatures and a single
pair of ground states at zero temperature) and (strictly) infinite dimensions
(where it is assumed that the state space structure is given by RSB). For the
moment, let’s assume the simplest (though not the most interesting) case that
in each dimension there is a single transition temperature, above which there is
a single pure state and below which there is a spin glass phase where the pure
state cardinality is independent of temperature and equal to the ground state
cardinality. This appears to be what most workers in the field believe. Many
who fall into the RSB camp are inclined toward the possibility that at the lower
critical dimension (possibly d = 3, probably no larger than d = 4) and above, the
low-temperature phase is fully described by RSB. Others have argued that there
is also an upper critical dimension at d = 6 [18], below which there is a single
pair of pure/ground states and above which infinitely many. Still others [96]
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conjecture that there is only a single pair of pure/ground states in all finite
dimensions (above the lower critical dimension), and the infinite-dimensional
limit is singular in the sense of the structure of the spin glass phase.

All of this remains conjecture. Numerical experiments mostly (but not uni-
versally) agree that in 2D there is only a single pair of ground states (it is
believed that Tc = 0 in 2D), but in 3D and 4D different groups have arrived at
different conclusions based on their numerical studies. The only rigorous results
for any dimension between one and infinity appear in [11,219,220], all of which
deal with two dimensions. In [219,220], NS proved that in 2D any two distinct
ground states can differ by only a single, positive density interface, providing evi-
dence that there is only a single pair of ground states. Further evidence for this
conclusion is provided in [11], where Arguin, Michael Damron, and NS proved
essentially that the half-plane with a free boundary condition along its edge has
only a single pair of ground states.

In a recent set of papers, Arguin, NS, and Janek Wehr attacked this problem
from a different, dimension-independent, direction, by proving lower bounds on
free energy fluctuations between pure states at positive temperature [13] and
energy fluctuations between ground states at zero temperature [14]. An upper
bound has existed for many years, where it was shown that in finite volumes
free energy fluctuations scale no faster than the square root of the surface area
of the volume under consideration [6,209,265]. Lower bounds have already been
obtained for several cases, where it was shown that free energy fluctuations scale
linearly with the square root of the volume under consideration. A (hopefully
small) difficulty is that the quantity used to obtain the lower bound is slightly
different from that used for obtaining the upper bound, so a corresponding upper
bound (which is expected to behave similarly to the known upper bound just
described) needs to be found for the quantity examined in [13,14]. If it can, then
for any cases where these results can be shown to apply, there must be no more
than a single pair of pure/ground states. This work is in progress at the time of
this writing.

While progress has been slow in determining numbers of pure/ground states
in realistic spin glass models, there are other interesting, but unrealistic, models
which can provide some interesting illumination. A very useful such model is
the so-called highly disordered model [23,211,212], in which the Hamiltonian is
Edwards–Anderson and couplings are independent random variables, but cho-
sen from a volume-dependent distribution. The idea is that the distribution of
coupling magnitudes depends on volume in such a way that, in sufficiently large
volumes, each coupling magnitude is more than twice as large as the next smaller
one, and no more than half as large as the next larger one. One interesting fea-
ture of this model is that the true ground state in any volume can be found
by the greedy algorithm (in fact, this was how the model was originally arrived
at). Moreover, the algorithm used to find the ground state can be mapped onto
invasion percolation. Consequently, the number of ground states can be found
in any dimension: there is only a single pair below d = 6 and uncountably many
above. (The original papers [211,212] used heuristic arguments to propose d = 8
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as the crossover dimension, but a more careful analysis in [133] indicated the
crossover dimension to be d = 6.)

Interestingly, the ground state multiplicity in this model is the same for both
the spin glass and the random ferromagnet. The somewhat subtle distinction
between the two comes from features of chaotic size dependence for the spin
glass, and its absence in the ferromagnet. In any case, the highly disordered
model remains a useful testing ground for new ideas.

Equilibrium Phase Transitions. Not much of the discussion so far is relevant to
spin glasses if there is no equilibrium phase transition to a spin glass phase above
some lower critical dimension dc: at positive temperature there would simply be
a unique Gibbs state. (Of course, even in that case the question of multiplicity of
ground states at T = 0 would still exist.) Even with a phase transition, it could
still be the case that there exists a unique Gibbs state above and below the
transition temperature Tc(d); the state would simply be qualitatively different
in these two temperature regimes. Or there could be multiple transitions within
a fixed dimension [224]. And even in the absence of a phase transition there
could be some sort of dynamical transition with interesting features.

However, a great deal of mostly numerical work [22,33,118,124,134,232] points
toward amore conventional scenario inwhich in dimension d > dc, there is a unique
transition temperature Tc(d), below which spin-flip symmetry is broken (equiva-
lently, the Edwards–Anderson order parameter [88] qEA �= 0). Moreover, almost
all (currently relevant) theoretical work addressing the low-temperature spin glass
phase, whether using evidence from the infinite-range spin glass (i.e., the RSB sce-
nario), or resulting from scaling arguments (droplet-scaling), or suggested from
the structure of the metastate (chaotic pairs) or following numerical simulations
(TNT) begin by assuming an equilibrium spin glass transition breaking spin-flip
symmetry. So it’s natural to ask whether such a transition can be proved to exist
(in any finite dimension), and if so, what can one say about its structure?

Substantial progress toward this end was made by Jon Machta and NS
in [165–167], where percolation-theoretic methods were used to uncover what
is likely to be an underlying geometric structure for spin glass phase transitions.
These random graph methods, in particular the Fortuin–Kastelyn (FK) random
cluster (RC) representation [106,138], provide a set of useful tools for studying
phase transitions (more specifically, the presence of multiple Gibbs states arising
from broken spin flip symmetry) in discrete spin models. These representations
map Ising and Potts models onto a type of percolation problem, thereby allowing
spin correlation functions to be expressed through the geometrical properties of
associated random graphs. FK and related models are probably best known in
the physics literature for providing the basis for powerful Monte Carlo methods,
in particular the Swendsen–Wang algorithm for studying phase transitions [270].
At the same time they have proved important in obtaining rigorous results on
phase transitions in discrete-spin ferromagnetic (including inhomogeneous and
randomly diluted) models. Because of complications due to frustration, however,
graphical representations have so far played a less important role in the study
of spin glasses.
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Some readers will already be familiar with the Fortuin–Kasteleyn random
cluster representation. For those who are not and would like to read on, a brief
one-page summary can be found in [167]. (For those who have both the interest
and the time, the original references [106,138] are the best place to go. Also see
the article by Newman [201] and/or the lengthy and detailed review by Grim-
mett [114], as well as papers by Camia, Jianping Jiang, and Chuck containing
recent applications of FK methods [54,55].) In what follows, we assume a famil-
iarity with the basic ideas of the FK random cluster representation for discrete
spin models. For our purposes, it’s sufficient to note that in the case of a fer-
romagnet, general theorems [47] ensure that when percolation of an FK cluster
occurs, the percolating cluster is unique. We shall informally refer to such per-
colation as “FK percolation”. It can then be shown that FK percolation in the
ferromagnet corresponds to the presence of multiple Gibbs states (in the Ising
ferromagnet, magnetization up and magnetization down) with broken spin-flip
symmetry, and moreover that the onset of percolation occurs at the ferromag-
netic critical temperature.

However, the situation is greatly complicated when couplings of both signs
are allowed, as in the spin glass. In this case, FK percolation does not appear
to be a sufficient condition for multiple Gibbs states (although it’s undoubtedly
necessary), and the numerical onset of FK percolation does not coincide with
(what is believed to be) the transition to a spin glass state with broken spin-flip
symmetry [270]. The essential problem is the following. If there is broken spin-flip
symmetry, then in a finite-volume Gibbs state one should be able to change the
orientation of the spin at the origin by changing the orientations of fixed spins
at the boundary; or equivalently, the use of (at least some) fixed-spin boundary
conditions should lead to a nonzero thermally averaged magnetization at the
origin. As an example, choose the boundary condition where all boundary spins
are fixed to be +1. At positive temperature, there are many possible realizations
of the FK percolating cluster. But at least a priori, some of these will connect the
origin to the boundary in a way that will lead to a positive magnetization at the
origin, and others to a negative magnetization, and these could cancel leading to
a net zero thermal average of the magnetization. Of course, we don’t know for
sure that this happens, but so far no one has been able to rule it out. Supporting
evidence comes from the numerical studies described above, in which single FK
percolation occurs well above what is believed to be the spin glass transition
temperature, and proofs that FK percolation occurs [110] in 2D models where
no broken spin-flip symmetry is expected. An interesting speculation, which
remains to be studied numerically, is that FK percolation might indeed indicate
a phase transition, but not one where spin-flip symmetry is broken. Rather, it
could be the case that there is a change in behavior of two-point correlation
functions with distance, but the EA order parameter remains zero [224].

So at first glance it would appear that FK percolation is the wrong tool to
use in analyzing spin glass phase transitions. However, it turns out that FK per-
colation is indeed relevant, but that there is a considerably more complicated
signature for the spin glass transition in both short-range and infinite-range
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models, as elucidated in [165–167]. These papers pointed out that understand-
ing the percolation signature for the spin glass phase requires two ingredients
beyond what is needed for ferromagnets. The first is the need to consider per-
colation within a two-replica representation, and the second is that spin glass
ordering corresponds to a more subtle percolation phenomenon than simply the
appearance of a percolating cluster—it involves a pair of percolating clusters,
first proposed in [224].

The ferromagnetic phase transition corresponds to percolation of a unique
infinite cluster in the FK representation, which will hereafter be referred to as
“single” FK percolation. As noted above, single FK percolation is insufficient—
so far as is currently known—to indicate the presence of multiple Gibbs states
in spin glasses. However, if one switches to a two-replica formalism, one can
study what might be called “double FK percolation”, meaning the following:
take two independent FK realizations and consider “doubly occupied” bonds—
i.e., bonds occupied in both representations. If these percolate (as usual, with
probability one), then one has double FK percolation. (In fact, there are two-
replica representations other than FK than can be used equally well, as described
in [165]. For the sake of brevity we focus here only on double FK percolation.)

Double FK percolation is much more difficult to study than single FK perco-
lation, and a number of general theorems valid for the latter fail for the former.
In particular, uniqueness of a percolating double cluster is no longer guaranteed.
And not only is it not guaranteed, it doesn’t happen. What was found instead was
that the spin glass transition corresponds to the breaking of indistinguishability
between two percolating networks of doubly FK-occupied bonds—in particular,
by their having a nonzero difference in densities.

It’s worth describing this in just a little more detail, starting with short-range
spin glasses (in what follows, we note that results were obtained numerically for
the EA spin glass in three dimensions and rigorously for the infinite-range SK
model). For the EA model in 3D (and presumably in higher dimensions as well),
there is a series of transitions as the temperature is lowered from infinity. At a
temperature Tc2 well above the putative spin glass transition temperature, there
appear two doubly-infinite FK clusters of equal density, and presumably macro-
scopically indistinguishable. In terms of using boundary conditions to observe
macroscopically distinguishable Gibbs states, this situation is no better than
that of single FK percolation. Below a lower temperature Tc1, which is (within
numerical error) equal to the spin glass transition temperature Tc observed using
other means, the clusters separate in density—one grows and the other dimin-
ishes, leading to the presence of a macroscopic observable whose sign can be
reversed using a flip of boundary conditions (and therefore corresponds to bro-
ken spin-flip symmetry).

The SK model behaves differently: above Tc, there is no double percolation
at all, while below Tc two doubly infinite clusters of unequal density appear.

For more details we refer the reader to [165–167]. This work will hopefully
prove useful in understanding better the differences between the nature of the
phase transition in ferromagnets and in spin glasses. More importantly, the hope
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is that for short-range models, this work will be a significant step toward finally
developing a rigorous proof for spin glass ordering and will eventually lead to
a clean analysis of the differences between short- and infinite-range spin glass
ordering. Finally, it can help to explain why there is no spin glass transition
leading to broken spin-flip symmetry on simple planar lattices: two dimensions
does not generally provide enough “room” for two disjoint infinite clusters to
percolate. However, a system that is infinite in extent in two dimensions but
finite in the third might be able to support two percolating clusters, with unequal
densities at low temperature. These intriguing possibilities remain unexplored
at the time of this writing.

1.2 Nonequilibrium Dynamics of Discrete Spin Systems

A second broad area of Chuck’s research interests centers on the dynamical evo-
lution of Ising and Potts-like systems, both ordered and disordered, in conditions
far from thermodynamic equilibrium. His work in this general area addresses a
wide variety of problems focusing on different aspects of nonequilibrium dynam-
ics, but this section will touch on only two: the mostly unexplored relation
between nonequilibrium dynamics and equilbrium thermodynamics, and the
problem of predictability (or more colloquially, “nature vs. nurture”) in spin sys-
tems following a deep quench. For brevity’s sake, we unfortunately omit other
areas of Chuck’s notable contributions to topics as diverse as persistence [217],
aging [100,101,103], broken ergodicity [266], biological evolution [148,204], and
food webs [70,203]; we refer those interested to the references cited.

Nonequilibrium Dynamics and Equilbrium Thermodynamics. It is often noted in
the literature that pure state multiplicity, as a purely equilibrium property of
thermodynamic systems, plays no role in its dynamics, because (under conven-
tional dynamics, such as one-spin-flip, to which we adhere throughout) a system
in a pure state remains in that state forever. A natural conclusion to draw is
that a system’s pure state multiplicity and its dynamical behavior are largely
distinct, and information about one says little about the other. However, a series
of rigorous arguments in [218] showed a surprisingly deep connection between
the two under what initially would seem the most unpromising conditions: a
system undergoing a deep quench and thereafter evolving under conditions far
from equilibrium.

The arguments are long and technical and won’t be repeated here. The
essence of the main result is the following. Consider a system at a tempera-
ture where, in equilibrium, there are (or are presumed to be) two or more pure
states. Examples include the Ising ferromagnet and the EA spin glass above the
critical dimension, among many others. Consider now a deep quench from high
(well above Tc) to low (well below Tc) temperature. It was proved in [218] that
as time t → ∞, although the system is usually in some pure state locally (i.e.,
within a fixed volume), then either (a) it never settles permanently (within that
volume) into a single pure state, or (b) it does but then the pure state depends on
both the initial spin configuration and the realization of the stochastic dynamics.
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It was further proved that the former case holds for deeply quenched 2D
ferromagnets. But the latter case is particularly interesting, because it was shown
in [218] that it can occur only if there exists an uncountable number of pure
states with almost every pair having zero overlap. It was further shown that in
both cases, almost no initial spin configuration is in the basin of attraction of a
single pure state. That is, after a deep quench the resulting configuration space
is almost all boundary; equivalently, the union of the basins of attraction of all
pure states forms a set of measure zero in configuration space.

So in principle the nonequilibrium dynamics following a deep quench pro-
vides information about the multiplicity of pure states and vice-versa. However,
this relation is likely to be more useful for future mathematical analysis than
for numerical tests, which are confined to relatively small systems. Nevertheless,
there may be experimental consequences as yet unexplored. Unlike the ferro-
magnet, it is not clear that spin glasses are easily prepared to lie within a single
pure state, even under conditions as close to equilibrium as current technology
allows. In particular, because of the possibility of chaotic temperature depen-
dence [42,97], the conclusions of [218] could well apply to laboratory spin glasses
prepared under conditions where small temperature changes are made slowly.
Experimentally observed slow relaxation and long equilibration times in spin
glasses could then be a consequence of small (relative to the system) domain
size and slow (possibly due to pinning) motion of domain walls (a conclusion
earlier reached by Fisher and Huse [98] using different considerations).

Nature vs. Nurture: Predictability in Discrete Spin Dynamics. Although the core
issues raised in [218] remain open, the paper led to an unanticipated research
direction that opened an entirely new area of inquiry: given a typical initial
configuration, which then evolves under a specified dynamics, how much can
one predict about the state of the system at later times? Chuck’s papers with
collaborators have colloquially referred to this as a “nature vs. nurture” problem,
with “nature” representing the influence of the initial configuration (and disorder
realization, if relevant) and “nurture” representing the influence of the random
dynamics.

First one must determine under what conditions a system settles down
[190,218], in the sense of local equilibration: do domain walls cease to sweep across
a fixed region after a (size-dependent) finite time? Local equilibration occurs in
many quenched systems, for example, any disordered Ising model with continu-
ous couplings [190], but has also been shown not to occur for others, such as the
2D homogeneous Ising ferromagnet [190]. When local nonequilibration (LNE)
occurs, one can still ask whether the dynamically averaged configuration has a
limiting distribution. If so, this implies a complete lack of predictability, while
the absence of a distributional limit implies that some amount of predictabil-
ity remains [190,218]. In [218], systems displaying LNE but having a limiting
dynamically averaged distribution were said to exhibit “weak LNE”, while those
with no distributional limit were said to exhibit “chaotic time dependence”.

So the distinction between these two types of local nonequilibration is impor-
tant for the question of predictability. While the presence of LNE has been
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rigorously established for several systems [190,218], determining which type
of LNE occurs is considerably more difficult (when the initial state is cho-
sen randomly, as discussed above). However, Renato Fontes, Marco Isopi, and
Chuck were able to prove the presence of chaotic time dependence in the one-
dimensional voter model with random rates at zero temperature (equivalently,
the 1D zero-temperature stochastic Ising model) if the disorder distribution
is heavy-tailed [100]. (This is a 1D version of Jean–Phillipe Bouchaud’s trap
model [40]). Otherwise, they showed that chaotic time dependence is absent.
The latter conclusion was also shown to hold for the voter model with ran-
dom rates in dimension greater than two. In further work [101], Fontes et al.
extended the results of [100] by analyzing in detail the space-time scaling limit
of the 1D voter model with random rates as a singular diffusion in a random
environment. The limit object, now know as FIN (Fontes–Isopi–Newman) diffu-
sion, has some striking scaling properties. Much subsequent work, in particular
by Gerard Ben Arous, Jiri Cerny, and collaborators [15] has studied scaling lim-
its beyond one dimension, which are rather different kinds of objects than the
FIN diffusions.

Returning to the problem of nature vs. nurture, the questions raised by these
considerations have led to a rich area of research that has brought in a variety
of collaborators and students, and that touches on a number of related dynam-
ical problems of interest, including phase-ordering kinetics, persistence, damage
spreading, and aging. The history of these efforts, along with recent advances, is
described in detail in a separate contribution to this volume by one of us (DLS),
to which we refer the interested reader.

1.3 Lee–Yang Zeros and the Riemann Hypothesis

In 1950 T.D. Lee and C.N. Yang published a pair of papers [159,279] that pio-
neered a new way of understanding phase transitions. They considered the ferro-
magnetic Ising model in an external magnetic field, and showed that the zeros of
its partition function, as a function of the external magnetic field, all lie on the
imaginary axis. Since that time it’s been shown that a number of other statisti-
cal mechanical systems obey Lee–Yang type theorems of their own, and Chuck
played a substantial part in these efforts. Given that Lee–Yang type theorems
provide not only an understanding of the properties of the phase transition in
a given system (e.g., existence of a mass gap [116,239]), but can also lead to
useful correlation inequalities [83,194], such results are important in our overall
understanding of phase transitions in condensed matter. For a general review
and discussion of applications of Lee–Yang type theorems, see [108].

Among Chuck’s contributions to this area was to extend the Lee–Yang the-
orem to ferromagnetic models with a very general class of single-spin distri-
butions [193], to the classical XY model [84] (further generalized in [163]; see
also [269]), and [109,225,226] to Villain models [273], which are closely related
to XY models. In [226] it was further shown that complex Gaussian multiplica-
tive chaos in general does not have the Lee–Yang property. These results have
some interesting implications. In particular, the “spin wave conjecture” [85,176]



The Work of C. Newman 13

asserts that, below a critical temperature, the angular variable θ of the XY (and
Villain) model at large scales behaves like a Gaussian free field (modulo 2π), sug-
gesting in turn that the spin variables in these models could behave like a version
of complex Gaussian multiplicative chaos. The spin wave conjecture might lead
one to expect that complex Gaussian multiplicative chaos would display a Lee–
Yang property; but the paper of Newman and Wu rules that out, at least for a
range of inverse temperature β.

In a different direction, Chuck has long been interested in the possible connec-
tion between the Lee–Yang theorem and the famous Riemann Hypothesis. Recall
that the Riemann Hypothesis states that the nontrivial zeroes of the Riemann zeta
function ζ(s) =

∑∞
n=1

1
ns all have real part 1/2. While on the surface it sounds

less than dramatic, many consider it to be the most important unsolved problem
in mathematics. Its proof (or disproof) has important implications for the distri-
bution of prime numbers, the behavior of various functions in number theory and
combinatorics, eigenvalue distributions of random matrices, quantum chaos, and
problems in many other areas. The similarity between the distribution of Lee–
Yang zeros and those of the Riemann zeta function have long led to speculation
that one path to a proof of the Riemann Hypothesis lies through the Lee–Yang
theorem (for a review, see [149]). To date, however, attempts to carry out this
program have been unsuccessful (otherwise, you surely would have heard).

However, Chuck made an important contribution to this problem in a slightly
different and very interesting direction. In 1950 Nicolaas De Bruijn showed that
a certain function H(λ, z) (its precise form is unimportant for the purposes of
this discussion) has only real zeros for λ ≥ 1/2 [45]. In addition, if λ is such that
H(λ, z) has only real zeros, then for all λ′ > λ, H(λ′, z) also has all real zeros.
The Riemann Hypothesis is equivalent to H(0, z) having only real zeros. Now if
H has only real zeros for all real λ, then the Riemann Hypothesis would follow.
This was a strategy attempted by Polya, among others. However, Chuck proved
in [195] that there exist real λ for which H has a nonreal zero. This led to what
is now known as the De Bruijn–Newman constant, usually denoted by Λ. It is
defined to be the value such that if λ ≥ Λ, H has only real zeros, while if λ < Λ,
H has a nonreal zero.

The Riemann Hypothesis is true if and only if the De Bruijn–Newman con-
stant Λ ≤ 0. But in [195], Chuck conjectured that Λ ≥ 0. If true, this immediately
implies that the Riemann Hypothesis is true if and only if Λ = 0. Computer-
aided rigorous calculations of a lower bound for the De Bruijn–Newman con-
stant have been made over the years. Until 2018, the best lower bound was
−1.1 × 10−11 [251], but recently Brad Rodgers and Terry Tao [247] posted a
proof verifying Chuck’s conjecture that Λ ≥ 0.

There also exist upper bounds for Λ. The earliest was de Bruijn’s Λ ≤ 1/2 [45]
in his original paper; an improvement to a strict inequality Λ < 1/2 was made
in 2009 by Ki, Kim, and Lee [147]. An improved upper bound of 0.22 was very
recently obtained by Tao and collaborators, as posted in [241]. In addition, a
survey article by Chuck and Wei Wu on de Bruijn–Newman type constants has
just been published [227].
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While work is ongoing, we’ll give the last word to Chuck. In [195], Chuck
noted that his conjecture that Λ ≥ 0 put a quantitative scaffolding behind the
dictum that the “Riemann hypothesis, if true, is only barely so.”

This introduction has barely described the extent and importance of Chuck’s
many contributions to mathematical physics and related areas. Our hope is that
the reader will go on to take a look at some of Chuck’s many papers, espe-
cially in areas that for lack of space, and the finite lifetimes of the authors, this
introduction was not able to discuss.

In the following sections we turn to a different aspect of Chuck’s work, involv-
ing seminal contributions to percolation theory, scaling limits, SLE, and related
topics.

2 Percolation Theory and Continuum Scaling Limits

In this section, we briefly review some of the other fundamental advances, more
probabilistic in nature, made by Chuck in his long and productive career. We will
only briefly mention the Brownian Web and then discuss Chuck’s contributions
to percolation theory and to the study of continuum scaling limits. Like the
results surveyed in the previous section, this side of Chuck’s work was mainly
motivated by questions arising in statistical physics, and sometimes quantum
field theory, or a combination of the two. The breadth of Chuck’s interests and
his agile versatility as a mathematician and mathematical physicist are evident
in the collection of problems discussed here and in the previous section.

2.1 The Brownian Web

Construction and relation to disordered systems. One of Chuck’s strengths is his
ability to move between fields and exploit fruitful connections. This is evident
in his influential work on the Brownian web, which has its roots in the analysis
of nonequilibrium dynamics in one-dimensional disordered systems, discussed in
the previous section. Roughly speaking, the Brownian web is the scaling limit
of the space-time graphical representation of an infinite collection of coalescing
random walks. It originated from Arratia’s Ph.D. thesis [16], where it is shown
that a collection of coalescing random walks on Z starting from every vertex
of Z converges to a collection of Brownian motions on R starting from every
point of the real line at time zero. Arratia’s attempt [17] to construct a process
corresponding to a collection of coalescing Brownian motions starting at every
point of the real line at every time t ≥ 0 was never completed. However, building
on Arratia’s work, the process was constructed years later by Balint Tóth and
Wendelin Werner [272], who discovered a surprising connection between Arratia’s
one-dimensional coalescing Brownian motions and a two-dimensional random
process repelled by its own local time profile, which they called true self-repelling
motion. A few more years later, Luiz Renato Fontes, Marco Isopi, Chuck and
DLS realized that the same system of coalescing Brownian motions also arises
from the scaling limits of one-dimensional spin systems [103]. The first three
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authors, together with Ravishankar, introduced [102,104] a topology such that
the system of coalescing Brownian motions starting from every space-time point
can be realized as a random variable in a separable metric space, and they
named this random variable the Brownian web. This remarkable object emerges
in contexts as diverse as hydrology and the zero-temperature dynamics of the
Ising model. The work of Chuck and coauthors on the Brownian web has inspired
others to explore its properties and propose extensions, spurring a wealth of
interesting papers. We will not discuss the topic further in this introduction;
instead we refer the interested reader to [252,268] for a survey of results and
extensions.

2.2 Percolation

Percolation as a mathematical theory was introduced by Broadbent and
Hammersley [43,44] to model the spread of a “fluid” through a random
“medium.” Broadbent and Hammersley interpreted the terms fluid and medium
broadly, having in mind situations such as a solute diffusing though a solvent,
electrons moving through an atomic lattice, molecules penetrating a porous solid,
or disease infecting a community. They were interested in situations where the
randomness is associated with the medium rather than with the fluid. To mimic
the randomness of the medium, one can think of the latter as a system of chan-
nels some of which are randomly declared closed to the passage of the fluid.
This can be modeled by a d-dimensional cubic lattice, seen as an infinite graph,
where the edges between nearest-neighbor vertices are independently declared
open (to the passage or the fluid) with probability p or closed with probability
1−p. Models of this type are called bond percolation models, and can be defined
on any graph. Many other variants have been studied, attracting the interest of
both mathematicians and physicists. One version in particular, site percolation
on the triangular lattice, will be discussed in more detail in Sect. 2.3. In site
percolation, the vertices of a graph rather than the edges are declared open or
closed.

Mathematicians are interested in percolation because of its deceptive simplic-
ity which hides difficult and elegant results. From the point of view of physicists,
percolation is one of the simplest statistical mechanical models undergoing a con-
tinuous phase transition as the value of the parameter p is varied, with all the
standard features typical of critical phenomena (scaling laws, conformal invari-
ance, universality). On the applied side, percolation has been used to model the
spread of a disease, a fire or a rumor, the displacement of oil by water, the behav-
ior of random electrical circuits, and more recently the connectivity properties
of communication networks.

Existence and Uniqueness of Infinite Clusters. One of the most interesting
aspects of percolation, and a major reason for its popularity, is its phase transi-
tion, which is of a purely “geometric” nature. Defining open clusters to be the
sets of vertices connected to each other by a path of open edges, one can ask
whether there exists an infinite open cluster at a given value p of the density



16 F. Camia and D. L. Stein

of open edges. This amounts to asking whether there is an open path from the
origin of the lattice (any deterministic vertex) to infinity with strictly positive
probability. Indeed, if the answer to this question is positive, then translation
invariance and an application of Kolmogorov’s zero-one law imply the existence
of an infinite open cluster with probability one somewhere in the system. If the
answer is negative, then with probability one, no infinite open cluster exists.
This justifies the introduction of the percolation function θ(p) defined as the
probability that the origin is connected to infinity by a path of open edges. In
terms of θ, θ(p) > 0 is equivalent to the existence of an infinite open cluster (with
probability one), which naturally leads to a definition of the critical probability
pc = sup{p : θ(p) = 0}.

An argument analogous to that used by Peierls [238] to establish the existence
of a phase transition in the Ising model can be used to show that θ(p) = 0 when
p is sufficiently small, and θ(p) > 0 when p is sufficiently close to one, which
implies that 0 < pc < 1. This fundamental result, proved early on by Broadbent
and Hammersley [44,119,120], shows that the percolation model undergoes a
phase transition and explains the subsequent interest in the subject (see, e.g.,
[37,115,144,264]).

When θ(p) > 0, it is natural to ask about the multiplicity of infinite open
clusters. A simple and elegant proof by Burton and Keane [46] shows that,
under quite general conditions, there is almost surely a unique infinite cluster.
The same conclusion had however already been reached two years earlier in
a joint paper of Chuck’s with Michael Aizenman and Harry Kesten [7]. Their
analysis applies to both site and bond models in arbitrary dimension, including
long range bond percolation where one considers edges (bonds) between vertices
that are not nearest-neighbors. A particularly interesting example of such long-
range models, covered in [7], is provided by one-dimensional 1/|x − y|2 models,
where the probability that the bond between vertices x and y is open decays like
1/|x − y|2. We’ll come back to such models shortly.

An important precursor to [7] is the paper by Chuck and Lawrence Shul-
man [207] which investigates the number and nature of infinite clusters in a large
class of percolation models in general dimension. Using primarily methods from
ergodic theory and measure theory, the paper shows that, under general condi-
tions, the number of infinite clusters is either 0, 1 or ∞. The class of percolation
models to which this result applies is characterized by translation invariance,
translation ergodicity, and a “finite energy” condition which implies that the
conditional probability of a local configuration, conditioned on the configuration
in the rest of the system, is always strictly between 0 and 1. Intuitively, having
strictly positive conditional probabilities for local configurations regardless of
the rest of the system means that there are no “prohibited” (local) configura-
tions. The proof by Burton and Keane [46] also uses this side of the finite energy
condition in a crucial way, together with translation invariance and ergodicity.
Their proof was extended in [110] to more general percolation models, including
in particular long-range models. The existing proofs of uniqueness of the infinite
cluster may, in fact, be adapted to all “periodic” graphs such that the number of
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vertices within distance n of the origin grows sub-exponentially in n. The situa-
tion is qualitatively different on trees where, although one still has two phases,
one can show that above the critical density pc there are infinitely many infinite
open clusters instead of just one. Yet another situation arises when one considers
the direct product of Z and a regular tree, as done in [205], where it is shown that
percolation on such a graph has at least three distinct phases, with the number
of infinite clusters being (almost surely) 0, ∞, and 1, respectively, as the density
of open bonds increases. Coauthored by Chuck and Geoffrey Grimmett, [205] is
the first paper to explore percolation on nonamenable graphs, and the subject
has since then attracted much attention. (Roughly speaking, an infinite graph
G is nonamenable if, for every finite subset W of G, the size of the boundary of
W is of the same order as the size of W . A typical example of a nonamenable
graph is a regular tree graph: as one “grows” the tree from the “root” adding
more vertices to the graph, the number of “leaves” is always of the same order
as the total number of vertices.) An introduction to percolation on nonamenable
graphs and a list of problems (some of which have by now been solved) are
contained in [30], and a somewhat more recent survey can be found in [164].

Another interesting result proved in [7], essentially as a corollary of the
uniqueness of the infinite open cluster, is the continuity of the percolation func-
tion θ, except possibly at the critical density pc. The continuity of the percolation
function θ at pc is still one of the major open problems in percolation theory.
For bond percolation on the square lattice, it was established in a groundbreak-
ing and very influential paper by Harry Kesten [143]. Ten years later, Takashi
Hara and Gordon Slade [123] proved continuity in dimension d ≥ 19 (a bound
later improved to d ≥ 11 [99]) and in more than six dimensions for sufficiently
“spread-out” models where long-range bonds are allowed. A little later, Barsky,
Grimmett and Newman [25] proved that the probability that there exists an
infinite cluster in N × Z

d−1 is zero for p = pc(Zd), but the continuity of θ at pc

remains a conjecture for percolation models in general dimensions.
The continuity results just described justify the characterization of the per-

colation phase transition as a continuous phase transition. Indeed, the percola-
tion phase transition is often considered a prototypical example of a continuous
phase transition. However, Chuck and Michael Aizenman [9] showed that the
situation is different if one considers one-dimensional 1/|x − y|2 models, already
mentioned earlier. In such models the percolation function θ(p) is discontinu-
ous at p = pc. Chuck and Larry Schulman [208] had already proved that one-
dimensional 1/|x−y|s percolation models have a phase transition for all s ≤ 2, a
result that is non-trivial for s > 1. This is analogous to the occurrence of a phase
transition in long-range one-dimensional Ising models with interactions decaying
like 1/|x − y|s [86]. The results of [9] were extended to Ising and Potts models
in [5], which provides a proof of a type of discontinuity originally predicted by
Thouless [271].

Critical Exponents. Typically, for statistical mechanical models undergoing a
continuous phase transition, close to the critical point, the correlation length and
other thermodynamic quantities exhibit power-law behavior in the parameters
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of the model. The exponents in those power laws are called critical exponents
and their values appear to be largely independent of the microscopic details of
the model. Instead, they appear to depend only on global features such as the
dimension and symmetries of the model. This phenomenon is called universal-
ity and has a natural explanation within the framework of the renormalization
group, which will be briefly discussed in Sect. 2.3.

A first quantitative theory of critical phenomena was proposed by Landau
[154], corresponding to the mean-field approximation that applies to systems on
a Bethe lattice [31] or in sufficiently high dimensions or with long-range inter-
actions. However, Onsager’s exact solution [230] of the two-dimensional Ising
model and Guggenheim’s results [117] on the coexistence curve of simple fluids
showed that critical exponents can take values different from those of Landau’s
mean-field theory. Indeed, critical exponents should only take their mean-field
values above the upper critical dimension duc, already introduced in Section IA.
Even today, only a small number of non-mean-field critical exponents have been
derived rigorously (including, as we’ll discuss later, a couple recently established
by Chuck and co-authors in the case of the planar Ising model). But in 1963,
a seminal paper by Rushbrooke [250] demonstrated how inequalities between
critical exponents can be derived rigorously and exploited fruitfully to study
the singularity of thermodynamic functions near the critical point. Since then,
numerous such inequalities have been proved for various models of statistical
mechanics.

Chuck’s contributions to this line of inquiry appeared in several papers
[8,198–200]. Papers [8,198,200] deal with the exponent γ for percolation, asso-
ciated with the expected cluster size χ, namely χ(p) ∼ (pc − p)−γ as p ↗ pc.
In particular, among the results reported in [198,200] is the fact that in one-
dimensional 1/|x − y|2 models, where a discontinuous phase transition occurs,
γ ≥ 2; conversely, for models such as standard site or bond percolation in dimen-
sion d > 2, where it is believed but not proved that the phase transition is contin-
uous, it is shown that, in order to prove continuity of the percolation function at
pc, it would suffice to show that γ < 2. (Incidentally, for percolation in d = 3, γ
is numerically estimated to be about 1.7—see, e.g., [263] and the references given
there.) Another result discussed in [198,200] is the inequality γ ≥ 2(1 − 1/δ),
with δ ≥ 2, which improves on the bound γ ≥ 1, proved in [8]. The critical
exponents considered in [199] are the exponent β, which determines the diver-
gence of the percolation function θ as p ↘ pc, namely θ(p) ∼ (p − pc)β , and
the exponent δ, which determines the behavior of the cluster size distribution at
pc, namely the probability Pn(pc) that the cluster of the origin contains exactly
n vertices when p = pc. Assuming that the percolation density vanishes at the
critical point, the inequality proved in [199] is β ≥ 2/δ, improving on a previous
result by Aizenman and Barsky [2] and on δ ≥ 2, since β ≤ 1 [67].

Coming back to [8], besides the proof of the inequality δ ≥ 1, already men-
tioned and soon improved upon, and other results discussed there, the most
remarkable and influential contribution of the paper is arguably the introduc-
tion of the triangle diagram ∇ and of the corresponding triangle condition.
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The triangle diagram is defined as a sum of two-point functions τ , namely
∇ =

∑
x,y τ(0, x)τ(x, y)τ(y, 0), and the triangle condition corresponds to the

finiteness of the triangle diagram at pc (or uniform boundness for p < pc). A
main result of [8] is a proof that, in finite-range percolation models, the triangle
condition implies γ = 1. The relevance of this result stems from the fact that
1 is the mean-field value of the exponent γ. Therefore, if the triangle condi-
tion is satisfied for some dimension d, this suggests that d is greater than the
upper critical dimension duc and that the mean-field approximation gives the
correct prediction for the critical exponents in dimension d. Indeed, Barsky and
Aizenman [24] extended the result of [8] to the critical exponents δ and β by
showing that, in percolation models where the triangle condition is satisfied, the
exponents δ and β exist and take their mean-field values: δ = 2 and β = 1. In
particular, the existence of the exponent β implies the continuity of the per-
colation function at pc, i.e., θ(pc) = 0. Another result concerning the triangle
condition is the proof by Nguyen [228] that, if the triangle condition is satis-
fied, then the gap exponents, characterizing the divergence of higher moments
of the cluster size distribution, assume their mean-field value of 2. The trian-
gle condition itself was proved in [122,123] for percolation in sufficiently high
dimensions for nearest-neighbor models, and above six dimensions for a class of
spread-out models. Similar conditions have been subsequently introduced in the
literature [26,38,69,229].

First Passage Percolation. First passage percolation was introduced by Ham-
mersley and Welsh [121] as a percolation-type model with a time dimension that
makes it suitable for studying the spread of a disease or a fluid in a porous
medium. In the standard version, one assigns to each edge e of Z

d a noneg-
ative random variable t(e), which is usually interpreted as the passage time
of the edge e. The passage time of a path r consisting of edges e1, . . . , en is
T (r) =

∑n
i=1 t(ei) and the passage or travel time between two vertices u, v ∈ Z

d

is the infimum of T (r) over all paths r from u to v. The stochastic region
B̃(t) = {x ∈ Z

d : T (0, x) ≤ t} is the set of vertices that can be reached from the
origin by time t. The interested reader is referred to [20] for precise definitions
and a comprehensive recent survey.

A main object of interest in first-passage percolation is the set B̃(t), and
in particular its asymptotic properties when t is large. The interface between
B̃(t) and its complement will, under natural hypotheses, grow linearly in t with
a deterministic shape, while the magnitude of the fluctuations of this inter-
face about its mean shape is believed to be typically of order tχ, with a uni-
versal exponent χ (which should of course depend on the dimension d). The
study of the fluctuations of growing interfaces is a subject that has attracted
considerable attention in the physics literature (see [150] for a review). In the
case of first-passage percolation, the first rigorous results were established by
Kesten [145,146], who proved the first rigorous bounds on the variance of the
passage time T (0, x). Since then, there has been an extensive literature on both
lower and upper bounds for the variance of passage times. A detailed review of
that literature can be found in [20]. In two dimensions, the best lower bound to
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date was obtained in [206] by Chuck and Marcelo Piza, who showed that the
variance of T (0, x) must grow at least as fast as log |x| and provided the first
proof of divergence of the fluctuations of the interface between B̃(t) and its com-
plement. Prior to this paper, there had been no proof that the shape fluctuations
diverge for any model in any dimension d > 1.

In related work [161], Cristina Licea, Chuck and Marcelo Piza provided the
best rigorous results on the wandering exponent ξ, which determines the traverse
fluctuations of time-minimizing paths. Like χ, the exponent ξ is expected to
depend on the dimension d but to be otherwise universal (e.g., independent of
the distribution of the random variables τ(e)). There are, a priori, many possible
mathematical definitions of the exponent ξ, some based on point-to-plane and
some based on point-to-point passage times, but it is believed that they yield
the same exponent. Furthermore, it has been conjectured that ξ(d) ≥ 1/2 for all
dimensions d ≥ 2, with a strict inequality (superdiffusivity) at least for low d,
and with ξ(2) = 2/3. In [161], Licea, Newman and Piza, working primarily with
definitions of ξ of the point-to-plane type, obtained the lower bounds ξ(d) ≥ 1/2
for all d and ξ(2) ≥ 3/5. It should be noted that the exponents χ and ξ had been
conjectured in numerous physics papers to satisfy the scaling identity χ = 2ξ−1,
irrespective of the dimension (see [150]). This relation was recently proved [66]
by Sourav Chatterjee. Before Chatterjee’s paper, the best result was due to
Newman and Piza [206] who proved that χ′ ≥ 2ξ − 1, where χ′ is an exponent
closely related (and perhaps equal) to χ.

Another line of inquiry pursued by Chuck concerns the study of infinite
geodesics, motivated by the connection (in d = 2) between “bigeodesics” (i.e.,
doubly-infinite geodesics) in first-passage percolation and ground states of dis-
ordered ferromagnetic spin models [105,202]. Originating from the physics lit-
erature on disordered Ising models is a conjecture that, at least in two dimen-
sions, bigeodesics should not exist. This derives from the conjecture that, in low
dimensions (including d = 2), disordered Ising ferromagnets should have only
two (constant) ground states. Indeed, the existence of nonconstant ground states
for a disordered Ising model on Z

2 with couplings Je would imply the existence
of bigeodesics on a dual square lattice Z

2∗ with passage times τ(e∗) = Je, where
the dual edge e∗ is the perpendicular bisector of e.

A celebrated shape theorem [72,145,246] states, roughly speaking, that B̃(t)
behaves like tB0 + o(t) as t → ∞, where B0 is a convex subset of R2. Under the
assumption that the boundary of B0 has uniformly positive curvature, Cristina
Licea and Chuck proved [162] that all infinite geodesics have an asymptotic
direction, and that there is a set D ⊂ [0, 2π) of full Lebesgue measure such that,
for any θ ∈ D, there are no bigeodesics with one end directed in direction θ. This
result provides a partial verification of the conjecture mentioned above; however,
a proof that the asymptotic shape B0 has uniformly positive curvature seems to
be still out of reach.

In [129], Doug Howard and Chuck introduced a Euclidean version of first-
passage percolation where the vertex set of the lattice Z

d is replaced by the set
of points of a homogeneous Poisson point process on R

d. For this model, in [129]
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they proved a shape theorem, with asymptotic shape given by a Euclidean ball
(due to the isotropy of the model), and the nonexistence of certain (geometrically
non-realistic) doubly infinite geodesics. In [130], they continued their study of
this new model, showing in particular that, for any dimension, with probability
one, every semi-infinite geodesic has an asymptotic direction and every direc-
tion has at least one semi-infinite geodesic (starting from each Poisson point).
In [131], they proved the bounds χ ≤ 1/2 and ξ ≤ 3/4 for Euclidean first-passage
percolation in all dimensions, together with other interesting results concerning
spanning trees of semi-infinite geodesics and related random surfaces.

Chuck’s work on first passage percolation has been and continues to be very
influential. His results on the subject continue to be cited, and the ideas and
methods developed by Chuck and coauthors have been used and extended in
numerous papers (for a small selection, see [19,64,73,74,93,112,126,242]).

2.3 Limit Theorems and Continuum Scaling Limits

Over the past two decades, besides working on disordered systems and nonequi-
librium dynamics, Chuck has dedicated a lot of effort to the study of continuum
scaling limits, particularly in the case of spanning trees, percolation and the Ising
model. Chuck’s interest in scaling limits, and in particular in the Euclidean fields
emerging from such limits, has deep roots, going all the way back to his Ph.D.
dissertation on Quantum Field Theory [191] (see also [192]).

A main goal of both probability theory and statistical physics is to under-
stand and describe the behavior of random systems with a very large number
of “degrees of freedom.” In field theory, one deals with an infinite number of
degrees of freedom, and there is indeed a deep connection between the theory
of critical phenomena and field theory. This connection is particularly salient in
the renormalization group approach to these theories in which, broadly speaking,
one analyses the behavior of specific observable quantities at different scales (see,
e.g., [276–278]). As more scales are included, the behavior of these observable
quantities is random, and the quantities themselves need to be “renormalized”
to “tame” their fluctuations. Renormalizable systems are such that this renor-
malization procedure is possible and one can take a limit over all the scales of
the system. In field theory, a momentum cutoff introduced to reduce the num-
ber of degrees of freedom is sent to infinity as higher and higher energies are
taken into consideration. In statistical mechanics, a version of the renormaliza-
tion approach can be implemented with a continuum scaling limit in which some
elementary scale of the system (e.g., the lattice spacing in lattice-based models
such as percolation and the Ising model) is sent to zero. Renormalizable systems
may possess a certain amount of scale invariance leading, in the limit of large
scales or large momenta, to models that are (statistically) self-similar.

Thanks to the work of Polyakov [240] and others [28,29], it was understood
by physicists since the early seventies that critical statistical mechanical models
should typically possess continuum scaling limits with a global conformal invari-
ance that goes beyond simple scale invariance. Following this observation, in
two dimensions, conformal methods were applied extensively to Ising and Potts
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models, Brownian motion, the self-avoiding walk, percolation, diffusion limited
aggregation, and more. The large body of knowledge and techniques (mainly
non-rigorous) that resulted from these efforts goes under the name of Conformal
Field Theory (CFT)—see [107] for an extensive treatment.

Normal Fluctuations, the Gaussian Fixed Point, and Beyond. The renormaliza-
tion group idea of gradually including the effect of more scales or degrees of
freedom has a parallel in the theory of limit theorems in probability theory (see
[34,135–137]).

In two influential papers [196,197], Chuck provided general conditions for the
central limit theorem to apply to positively correlated random variables. Normal
fluctuations are expected to occur in statistical mechanical systems away from a
critical point, in which case, observables such as the renormalized magnetization
in Ising ferromagnets are expected to converge to Gaussian random variables.
In renormalization group terminology, the system converges to the Gaussian
fixed point. Chuck’s results have several important applications, including to
magnetization and energy fluctuations in a large class of Ising ferromagnets,
infinite cluster volume and surface density fluctuations in percolation models,
and boson field fluctuations in (Euclidean) Yukawa quantum field theory models.

While Gaussian limits are very common, non-Gaussian limits can arise when
dealing with random variables that are strongly positively correlated. This is
believed to happen in various models studied in statistical mechanics, in partic-
ular in (ferromagnetic) Ising systems at the critical point. In the 1970s (extending
earlier results of Simon and Griffiths [259]), Chuck and co-authors studied the
emergence of non-Gaussian limits in Curie–Weiss (mean-field) models [89–91].
Part of the motivations for choosing a relatively simple class of systems such as
mean-field models came from the fact that, at the time, the existence of non-
Gaussian limits was an open problem, and seemed out of reach, for almost all
non-trivial Ising systems. The situation has changed since then, and Chuck has
contributed significantly to this change. As we will discuss at the end of this
section, more than thirty years after his work on Curie–Weiss models, Chuck
and a different set of co-authors were able to provide substantial contributions
to the study of other non-Gaussian limits, this time in the context of the criti-
cal planar Ising model. Meanwhile, new interesting results on other mean-field
models, some of which are analogous to those of [89,90], have also emerged—see
the review article by Alberici, Contucci and Mingione in this volume, where the
authors describe their recent work on mean-field monomer-dimer models.

Critical and Near-Critical Percolation. The renormalization group approach has
greatly improved our understanding of critical phenomena, but from a math-
ematical perspective it remains to this day largely non-rigorous. In the late
1990s, Chuck contributed to the development of a new framework [1,3,4]. That
framework and, in particular, the introduction of the Shramm–Loewner Evolu-
tion (SLE) by Oded Schramm [253] provided a new, mathematically rigorous,
approach to study the geometry of critical systems on the plane. This new app-
roach consists in viewing cluster boundaries in models such as Ising, Potts and
percolation models, or loops in the O(n) model, as random interfaces with a
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distribution that depends on the scale of the system under consideration (i.e.,
the lattice spacing), and in analyzing the continuum limit as the scale of the
system is sent to zero. Schramm realized [253] that, at criticality, these inter-
faces become, in the continuum limit, random planar curves whose distributions
can be uniquely identified thanks to their conformal invariance and a certain
“Markovian” property. There is a one-parameter family of SLEs indexed by a
positive real number κ: SLEκ is a random growth process based on a Loewner
chain driven by a one-dimensional Brownian motion with speed κ [248,253].
Lawler, Schramm and Werner [155–158], and Smirnov and Werner [262], among
others, used SLE to confirm several results that had appeared in the physics
literature, and to prove new ones.

In particular, substantial progress was made, thanks to SLE, in understand-
ing the fractal and conformally invariant nature of (the scaling limit of) large
percolation clusters, starting with the work of Schramm [253] and Smirnov [260],
which identified the scaling limit of critical percolation interfaces with SLE6. One
of Chuck’s early contributions to this area of research, in collaboration with one
of us (FC), was the first complete and self-contained proof of the convergence of a
percolation interface in critical site percolation on the triangular lattice to SLE6

[60]. The proof, which follows roughly Smirnov’s strategy [260] with some impor-
tant differences, appeared first in an appendix of an unpublished preprint [58].
It was later deemed worth publishing as a separate paper [60] because of the
importance of the result and of its many applications, which include the rigor-
ous derivation of various percolation critical exponents [262], of Watt’s crossing
formula [81], and of Schramm’s percolation formula [254].

The convergence result proved in [60] is also a crucial ingredient in the deriva-
tion of the full scaling limit of critical percolation [57,59], obtained by FC and
Chuck by taking the continuum limit of the collection of all percolation inter-
faces at once. The resulting object, called the continuum nonsimple loop process
in [57,59], is invariant under scale and conformal transformations, and inher-
its a spatial Markov property from the discrete percolation process. As shown
in [61], the continuum nonsimple loop process constructed in [57,59] is a Confor-
mal Loop Ensemble (CLE) [256,257]. The construction of the continuum scaling
limit of planar critical percolation [57,59] has had several interesting applica-
tions, including [27,280–283].

Another notable application of [57,59] is in the construction of the near-
critical scaling limit of planar percolation in which the percolation density p
approaches the critical value pc (pc = 1/2 for site percolation on the triangular
lattice) according to an appropriate power of the lattice spacing a, p = pc +
λaα, as a ↘ 0. With an appropriate choice of α (α = 3/4 for site percolation
on the triangular lattice), one can show that the scaling limit leads to a one-
parameter family, indexed by λ, of limits that are not scale invariant (except
in the critical case, λ = 0) but retain some of the properties of the critical
scaling limit (see, e.g., [56]). In [49,50], Camia, Fontes and Newman proposed
an approach to construct the one-parameter family of near-critical scaling limits
of planar percolation based on the critical full scaling limit and the “Poissonian
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marking” of some special (“macroscopically pivotal”) points. This approach leads
to a conceptual framework that can describe not only the scaling limit of near-
critical percolation but also of related two-dimensional models such as dynamical
percolation, the minimal spanning tree and invasion percolation. Partly inspired
by [49,50], Garban, Pete and Schramm later constructed those scaling limits
in [111]. Although Garban, Pete and Schramm use a notion of full scaling limit
different from that of [57,59], they do take advantage of some of the results
proved in [59], in particular to resolve issues of uniqueness, measurability, and
conformal invariance of the limit.

Besides the applications mentioned above, a remarkable aspect of [57,59] is
that they contain at once the first example of a nested CLE, including a descrip-
tion of some of its crucial properties, as well as the first rigorous construction
of a CLE as a scaling limit, before the concept of CLE was formalized in full
generality in [256]. Conformal Loop Ensembles have been extensively studied
for their intrinsic interest (see, e.g., [142,184–188,255,257,275]) and for their
applications to CFT (see, e.g., [77–79]), and we don’t attempt to provide here a
comprehensive list of references.

Critical and Near-Critical Ising Model. The Ising model [132], suggested by
Lenz [160] and cast in its current form by Peierls [238], is one of the most
studied models of statistical mechanics. Its two-dimensional version has played
a special role since Peierls’ proof of a phase transition [238] and Onsager’s cal-
culation of the free energy [230]. This phase transition has become a prototype
for developing new techniques. Its analysis has helped test a fundamental tenet
of critical phenomena, that near-critical physical systems are characterized by
a correlation length, which provides the natural length scale for the system and
diverges when the critical point is approached.

Substantial progress in the rigorous analysis of the two-dimensional Ising
model at criticality was made by Smirnov [261] with the introduction and scaling
limit analysis of discrete holomorphic observables. These have proved extremely
useful in studying the Ising model in finite geometries with boundary conditions
and in establishing conformal invariance of the scaling limit of various quantities,
including the energy density [127,128] and spin correlation functions [68]. (An
independent derivation of critical Ising correlation functions in the plane was
obtained in [82].)

In [62], Chuck and one of us (FC) proposed a strategy to obtain the con-
tinuum scaling limit of the renormalized Ising magnetization field using the FK
random cluster representation of the Ising model (see, e.g., [114]) and a new
tool called, in later papers, a conformal measure ensemble. The strategy, which
involves coupling conformal measure and conformal loop ensembles and leads to
a geometric representation of the Ising magnetization in the continuum remi-
niscent of the Edwards–Sokal coupling [87] was not fully carried out in [62]. (In
particular, no conformal measure ensemble is constructed in [62].) Nevertheless,
the paper was the starting point for the subsequent work of Camia, Garban,
Newman and of Camia, Jiang, Newman, which we now discuss.
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In [52] FC, Christophe Garban and Chuck, partly following the strategy
of [62] but without the use of conformal measure ensembles, showed that, in two
dimensions at the critical point, when properly renormalized, the Ising magneti-
zation field has a continuum scaling limit Φ0 which satisfies the expected prop-
erties of conformal covariance. Φ0 is a (generalized, Euclidean) random field on
R

2—i.e., for suitable test functions f on R
2, one can construct random variables

Φ0(f), formally written as
∫
R2 Φ0(x)f(x)dx. The tail behavior of the field Φ0,

obtained in [53], shows that Φ0 is not a Gaussian field. (This follows also from
the behavior of its correlations, which do not obey Wick’s theorem—see [68]).
Another significant contribution of [53] is the construction of the continuum
scaling limit of the magnetization field for the near-critical Ising model with
external magnetic field ha15/8 on the rescaled lattice aZ2 as a ↘ 0. As stated
in [52], it was expected that the truncated correlations of the resulting field Φh

would decay exponentially whenever h �= 0. A proof of that statement is pro-
vided in [54] together with a rigorous proof that the critical exponent for how
the correlation length diverges as h ↘ 0 is 8/15, and related scaling properties
of Φh. The related magnetization critical exponent δ, which determines how, at
the critical temperature, the magnetization depends on the external magnetic
field, was rigorously shown to be equal to 15 in a joint paper by FC, Garban
and Chuck [51].

It is worth pointing out that, while the concept of conformal measure ensem-
ble is not used in [52,53], it does play a crucial role in [54]. Indeed, a surprising
contribution of [54] is the demonstration that conformal measure ensembles cou-
pled with the corresponding conformal loop ensembles can be useful in analyzing
near-critical scaling limits. The construction of conformal measure ensembles and
their coupling to CLEκ is carried out for κ = 6 and 16/3 in the article by FC,
René Conijn and Demeter Kiss in Volume 2 of this Festschrift, where the authors
also obtain the geometric representation of the Ising magnetization in the contin-
uum mentioned earlier. We note that, as pointed out in [62], in addition to their
utility for critical and near-critical two-dimensional models, measure ensembles
may be more extendable than loop ensembles to scaling limits in dimensions
d > 2.

It seems fitting to conclude this introduction with some comments on the
relevance of [52,53] and [54] for (constructive) quantum field theory, one of
Chuck’s early scientific interests. Euclidean random fields, such as Φh, on the
Euclidean “space-time” R

d := {x = (x0, w1, . . . , wd−1)} are related to quantum
fields on relativistic space-time, {(t, w1, . . . , wd−1)}, essentially by replacing x0

with a complex variable and analytically continuing from the purely real x0 to
a pure imaginary (−it)—see [113,231]. In this context, non-Gaussian Euclidean
fields such as those discussed in [52,53] are of particular interest since Gaussian
Euclidean fields correspond to non-interacting (and therefore trivial) quantum
fields—see, e.g., [92]. The construction of interacting field theories has been from
the start one of the main goals of constructive field theory, albeit in the phys-
ically interesting case of four dimensions rather than in the two-dimensional
setting of [52,53]. Notwithstanding, one major reason for interest in Φh is that
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the associated quantum field theory was predicted by Zamolodchikov [285] to
have remarkable properties including a “particle content” of eight particles whose
masses are related to the exceptional Lie algebra E8—see [39,75,174]. One of
the main contributions of [54] is to prove a strictly positive lower bound on all
masses (i.e., a mass gap) predicted by Zamolodchikov’s theory. This is a first
natural step in the direction of a rigorous analysis of Zamolodchikov’s theory, to
which we hope Chuck will provide further insightful contributions.

The description of Chuck’s contributions in this introduction is unavoidably
biased and incomplete, and we apologize to all of his co-authors whose work has
not been mentioned. The responsibility rests with Chuck for being so unreason-
ably productive.
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Abstract. A collection of rigorous results for a class of mean-field
monomer-dimer models is presented. It includes a Gaussian represen-
tation for the partition function that is shown to considerably simplify
the proofs. The solutions of the quenched diluted case and the random
monomer case are explained. The presence of the attractive component of
the Van der Waals potential is considered and phase transition analysed.
In particular the breakdown of the central limit theorem is illustrated at
the critical point where a non Gaussian, quartic exponential distribution
is found for the number of monomers centered and rescaled with the
volume to the power 3/4.

Keywords: Monomer-dimer models · Mean-field models · Central
limit theorems

1 Introduction

The monomer-dimer models, an instance in the wide set of interacting particle
systems, have a relevant role in equilibrium statistical mechanics. They were
introduced to describe, in a simplified yet effective way, the process of absorption
of monoatomic or diatomic molecules in condensed-matter physics [15,16,41]
or the behaviour of liquid solutions composed by molecules of different sizes
[26]. Exact solutions in specific cases (e.g. the perfect matching problem) have
been obtained on planar lattices [25,27,36,38,43] and the problem on regular
lattices is also interesting for the liquid crystals modelling [1,21,28,32,33,39].
The impact and the interest that monomer-dimer models have attracted has
progressively grown beyond physics. Their thermodynamic behaviour has indeed
proved to be useful in computer science for the matching problem [11,35] or for
the applications of statistical physics methods to the social sciences [10].

From the physical point of view monomers and dimers cannot occupy the
same site of a lattice due to the strong repulsion generated by the Pauli exclu-
sion principle. Beside this interaction though, as already noticed by Peierls [40]
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in the first theoretical physics accounts, the attractive component of the Van der
Waals potentials might influence the phase structure of the model and its thermo-
dynamic behaviour. With the contemporary presence of those two interactions
the global physical observables become particularly difficult to study. Generic
Gaussian fluctuations on each ergodic component can still be expected but the
nature of the critical point, if any, is a priori not obvious.

Here we focus on a set of monomer-dimer models in the mean field setting,
i.e. on the complete graph where every site interacts in average with any other,
and present a review of recent results. Section 2 introduces the general properties
of the monomer-dimer systems that we approach with the help of a Gaussian
representation for their partition function. This representation and its combina-
torial features help to embed and ease part of the classical difficulties of their
studies. The celebrated Heilmann and Lieb relation, so rich of rigorous conse-
quences, emerges as the formula of integration by parts for Gaussian random
vectors. The absence of phase transition for the pure hard-core case is therefore
derived. Section 3 treats two quenched cases, namely the diluted complete graph
of Erdős–Rényi type as well as the diluted random monomer field activity. For
both cases we compute the exact solution. The diluted graph is treated with the
help of correlation inequalities and the representation of the monomer density
as the solution of an iterative distributional equation. The random monomer
activity model is solved by reducing the computation of the equilibrium state to
a standard variational problem, again with the help of the Gaussian represen-
tation. Section 4 introduces a genuine deterministic mean field model with and
without the attractive interaction. It is shown how the model with attraction dis-
plays a phase space structure similar to the mean field ferromagnet but without
the usual plus-minus symmetry. The model has a coexistence line bounded by
a critical point with standard mean-field critical exponents. In Sect. 5 we show
that while outside the critical point the central limit theorem holds, at criticality
it breaks down and the limiting distribution is found at a scale of N3/4 and turns
out to be a quartic exponential, like in the well known results by Newman and
Ellis [22,23] for the ferromagnet.

2 Definition and General Properties

Let G = (V,E) be a finite undirected graph with vertex set V and edge set
E ⊆ {ij ≡ {i, j} | i ∈ V, j ∈ V, i �= j} .

Definition 1 (Monomer-dimer configurations). A set of edges D ⊆ E is
called a monomer-dimer configuration, or a matching, if the edges in D are
pairwise non-incident (Fig. 1). The space of all possible monomer-dimer config-
urations on the graph G is denoted by DG.

Given a monomer-dimer configuration D, we say that every edge in D is
occupied by a dimer, while every vertex that does not appear in D is occupied
by a monomer. The set of monomers associated to D is denoted by M(D).
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Fig. 1. The bold edges in the left figure form a monomer-dimer configuration on the
graph, while those in the right figure do not because two of them share a vertex.

Remark 1. We can associate the dimer occupation variable αij ∈ {0, 1} to each
edge ij ∈ E : the edge ij is occupied by a dimer if and only if αij takes the value 1.
It is clear that monomer-dimer configurations are in one-to-one correspondence
with vectors α ∈ {0, 1}E satisfying the following constraint:

∑

j∼i

αij ≤ 1 , ∀ i ∈ V (1)

where j ∼ i means that ij ∈ E. Therefore, with a slight abuse of notation,
we denote by DG also the set of α ∈ {0, 1}E that satisfy (1). The condition (1)
guarantees that at most one dimer can be incident to a given vertex i, namely two
dimers cannot be incident. This fact is usually referred as hard-core interaction
or hard-core constraint or monogamy constraint. We also introduce an auxiliary
variable, the monomer occupation variable,

αi := 1 −
∑

j∼i

αij ∈ {0, 1} (2)

for each vertex i ∈ V : the vertex i is occupied by a monomer if and only if αi

takes the value 1.

The definition of monomer-dimer configurations already allows to raise non-
trivial combinatorial questions as “How many monomer-dimer configurations,
for a fixed number of dimers, exist on given a graph G?”. This combinatorial
problem is known to be NP-hard in general, but there are polynomial algorithms
and exact solutions for specific cases [25,30,35,36,43]. In Statistical Mechanics
a further structure is introduced and the previous problem becomes a specific
limit case. We consider a Gibbs probability measure on the set of monomer-
dimer configurations. There are several choices for the measure, depending on
how we decide to model the interactions in the system.

2.1 Pure Hard-Core Interaction

This amounts to taking into account only the hard-core interaction among par-
ticles and assign a dimer activity wij ≥ 0 to each edge ij ∈ E and a monomer
activity xi > 0 to each vertex i ∈ V .
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Definition 2 (Monomer-dimer models with pure hard-core interac-
tion). A pure monomer-dimer model on G is given by the following probability
measure on DG:

μG(D) :=
1

ZG

∏

ij∈D

wij

∏

i∈M(D)

xi ∀D ∈ DG , (3)

where the normalizing factor, called partition function, is

ZG :=
∑

D∈DG

∏

ij∈D

wij

∏

i∈M(D)

xi . (4)

We denote by 〈 · 〉G the expectation w.r.t. the measure μG. The dependence of
the measure on the activities wij , xi is usually implicit in the notations.

Remark 2. Equivalently, one can think the measure (3) as a Gibbs measure on
the space of occupancy variables α (see Remark 1), namely

μG(α) =
1

ZG
e−HG(α) ∀α ∈ DG ,

where
HG(α) := −

∑

ij∈E

hijαij −
∑

i∈V

hiαi ∀α ∈ DG

is the Hamiltonian function and hi := log xi, hij := log wij are called monomer,
dimer field respectively. The partition function (4) rewrites

ZG =
∑

α∈DG

exp

⎛

⎝
∑

ij∈E

hijαij +
∑

i∈V

hiαi

⎞

⎠ . (5)

Remark 3. It is worth noticing that the Definition 2 is redundant for two rea-
sons. First one can consider without loss of generality monomer-dimer models
on complete graphs only: a monomer-dimer model on the graph G = (V,E)
coincides with a monomer-dimer model on the complete graph with N = |V |
vertices, by taking wij = 0 for all pairs ij /∈ E. In this case we denote the
partition function (5) with ZN . Secondly, one can set without loss of generality
all the monomer activities equal to 1: the monomer-dimer model with activities
(wij , xi) coincides with the monomer-dimer model with activities ( wij

xixj
, 1), since

the relation ∏

i∈M(D)

xi =
( ∏

i∈V

xi

) ∏

ij∈D

1
xi xj

shows that the partition function is multiplied by an overall constant and there-
fore the probability measure is left unchanged. The same argument shows also
that if the dimer activity is uniform on the graph then it can be set equal to 1: the
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monomer-dimer model with activities (w, xi) coincides with the monomer-dimer
model with activities (1, xi√

w
), since

w|D| = wN/2

(
1√
w

)|M(D)|
.

Remark 4. The following bounds for the pressure (logarithm of the partition
function) will be useful:

∑

i∈V

log xi ≤ log ZG ≤
∑

i∈V

log xi +
∑

ij∈E

log
(

1 +
wij

xi xj

)
. (6)

The lower bound is obtained considering only the configuration with no dimers,
while the upper bound is obtained by eliminating the hard-core constraint.

An interesting fact about monomer-dimer models is that they are strictly
related to Gaussian random vectors.

Proposition 1 (Gaussian representation [5,45]). The partition function of
any monomer-dimer model over N vertices can be written as

ZN = Eξ

[ N∏

i=1

(ξi + xi)
]

, (7)

where ξ = (ξ1, . . . , ξN ) is a Gaussian random vector with mean 0 and covariance
matrix W = (wij)i,j=1,...,N and Eξ[ · ] denotes the expectation with respect to ξ.
The diagonal entries wii are arbitrary numbers, chosen in such a way that W is
a positive semi-definite matrix.

Proof. The monomer-dimer configurations on the complete graph are all the
partitions into pairs of any set A ⊆ {1, . . . , N}, hence

ZN =
∑

D∈DN

∏

ij∈D

wij

∏

i∈M(D)

xi =
∑

A⊆{1,...,N}

∑

P partition
of A into pairs

∏

ij∈P

wij

∏

i∈Ac

xi . (8)

Now choose wii for i = 1, . . . , N such that the matrix W = (wij)i,j=1,...,N is
positive semi-definite1. Then there exists an (eventually degenerate) Gaussian
vector ξ = (ξ1, . . . , ξN ) with mean 0 and covariance matrix W . And by the
Isserlis–Wick rule

Eξ

[ ∏

i∈A

ξi

]
=

∑

P partition
of A into pairs

∏

ij∈P

wij . (9)

Substituting (9) into (8) one obtains (7). �

1 For example one can choose wii ≥ ∑
j �=i wij for every i = 1, . . . , N .
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We notice that the representation (7) allows to express average values w.r.t.
the measure (3) as Gaussian averages. For example, given a vertex i ∈ V , its
monomer probability by (5) writes

〈αi〉N =
∂

∂hi
log ZN . (10)

Then, using the representation (7) in the r.h.s. of (10) together with the identity
∂

∂hi
≡ xi

∂
∂xi

, one obtains

〈αi〉N = xi Eξ

[
1

ξi + xi
gN (ξ, x)

]

where gN (ξ, x) =
1

ZN

∏N
i=1(ξi + xi).

Heilmann and Lieb [30] provided a recursion for the partition functions of
monomer-dimer models. As we will see this is a fundamental tool to obtain exact
solutions and to prove general properties.

Proposition 2 (Heilmann–Lieb recursion [30]). Fixing any vertex i ∈ V
it holds:

ZG = xi ZG−i +
∑

j∼i

wij ZG−i−j . (11)

Here G − i denotes the graph obtained from G deleting the vertex i and all its
incident edges.

The Heilmann–Lieb recursion can be obtained directly from the definition
(4), exploiting the hard-core constraint: the first term on the r.h.s. of (11) cor-
responds to a monomer on i, while the following terms correspond to a dimer on
ij for some j neighbour of i. Here we show a different proof that uses Gaussian
integration by parts.

Proof (see [5]). Set N := |V |. Introduce zero dimer weights whk = 0 for all
the pairs hk /∈ E, so that ZG ≡ ZN . Following Proposition 1, introduce an N -
dimensional Gaussian vector ξ with mean 0 and covariance matrix W . Then
write the identity (7) isolating the vertex i :

ZG = Eξ

[ N∏

k=1

(ξk + xk)
]

= xi Eξ

[ ∏

k �=i

(ξk + xk)
]

+ Eξ

[
ξi

∏

k �=i

(ξk + xk)
]

. (12)

Now apply the Gaussian integration by parts to the second term on the r.h.s. of
(12):

Eξ

[
ξi

∏

k �=i

(ξk + xk)
]

=
N∑

j=1

Eξ[ξiξj ] Eξ

[
∂

∂ξj

∏

k �=i

(ξk + xk)
]

=
∑

j �=i

wij Eξ

[ ∏

k �=i,j

(ξk + xk)
]

. (13)
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Notice that summing over j �= i in the r.h.s. of (13) is equivalent to summing
over j ∼ i, since by definition wij = 0 if ij /∈ E. Substitute (13) into (12):

ZG = xi Eξ

[ ∏

k �=i

(ξk + xk)
]

+
∑

j∼i

wij Eξ

[ ∏

k �=i,j

(ξk + xk)
]

.

To conclude the proof observe that (ξk)k �=i is an (N − 1)-dimensional Gaussian
vector with mean 0 and covariance (whk)h,k �=i. Hence by Proposition 1

ZG−i = Eξ

[ ∏

k �=i

(ξk + xk)
]

.

And similarly

ZG−i−j = Eξ

[ ∏

k �=i,j

(ξk + xk)
]

.

�
The main general result about monomer-dimer models is the absence of phase

transitions, proved by Heilmann and Lieb [30,31]. This result is obtained by
localizing the complex zeros of the partition functions far from the positive real
axis. A different probabilistic approach has been later proposed by van den
Berg [12].

Theorem 1 (Zeros of the partition function [30]). Consider uniform
monomer activity x on the graph and arbitrary dimer activities wij. The parti-
tion function ZG is a polynomial of degree N in x, where N = |V |. The complex
zeros of ZG are purely imaginary:

{x ∈ C |ZG(wij , x) = 0} ⊂ iR .

Furthermore they interlace the zeros of ZG−i for any given i ∈ V , that is:

a1 ≤ a′
1 ≤ a2 ≤ a′

2 ≤ · · · ≤ a′
N−1 ≤ aN , (14)

where −ia1, . . . ,−iaN are the zeros of ZG and −ia′
1, . . . ,−ia′

N−1 are the zeros of
ZG−i. The relation (14) holds with strict inequalities if wij > 0 for all i, j ∈ V .

Corollary 1 (Absence of phase transitions) Consider dimer activities
w w

(N)
ij and monomer activities xx

(N)
i and assume they are chosen in such a

way that p := limN→∞ 1
N log ZN exists. Then the function p is analytic in the

variables (w, x) ∈ (0,∞)2 and the derivatives ∂h+k

∂hw ∂kx
can be interchanged with

the limit N → ∞.
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2.2 Hard-Core and Imitative Interactions

Beyond the hard-core constraint it is possible to enrich monomer-dimer models
with other kinds of interaction. For example in this work we consider, for a given
D ∈ DG, the set of edges connecting particles of the same kind

I(D) = {ij ∈ E | i, j ∈ M(D) or i, j /∈ M(D)}
and we introduce an interaction between any pair of vertices ij ∈ I(D) tuned
by a coupling Jij ∈ R. More precisely

Definition 3 (Monomer-dimer models with imitative interactions) An
imitative monomer-dimer model on G is given by the following Gibbs probability
measure on DG:

μG(D) :=
1

ZG

∏

ij∈D

wij

∏

i∈M(D)

xi

∏

ij∈I(D)

eJij (15)

for all D ∈ DG. The partition function is

ZG :=
∑

D∈DG

∏

ij∈D

wij

∏

i∈M(D)

xi

∏

ij∈I(D)

eJij

The dependence of the measure on the coefficients wij , xi, Jij is usually
implicit in the notations.

When all the Jij ’s take the value zero this model is the pure hard-core model
introduced in the previous section. Positive values of the Jij ’s favour the config-
urations with clusters of dimers and clusters of monomers.

Remark 5. The usual Gibbs form 1
ZG

e−HG(α) for the measure (15) is obtained
by setting xi =: ehi , wij =: ehij and taking as Hamiltonian function

HG(α) := −
∑

ij∈E

hijαij −
∑

i∈V

hiαi −
∑

ij∈E

Jij

(
αiαj + (1 − αi)(1 − αj)

)

for all α ∈ DG.

The Gaussian representation and the recursion relation found for the pure
hard-core case can be extended to the imitative case.

Proposition 3. The partition function of any monomer-dimer model over N
vertices can be written as

ZN = Eξ

[ ∑

A⊂{1,...,N}

∏

i∈A

ξi

∏

i∈Ac

xi

∏

i,j∈A or
i,j∈Ac

eJij/2
]

, (16)

where ξ = (ξ1, . . . , ξN ) is a Gaussian random vector with mean 0 and covariance
matrix W = (wij)i,j=1,...,N and Eξ[ · ] denotes the expectation with respect to ξ.
The diagonal entries wii are arbitrary numbers, chosen in such a way that W is
a positive semi-definite matrix. Moreover we set Jii = 0.
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The proof is the same as Proposition 1. It is interesting to observe that, when
all the ξi’s are positive, the sum inside the expectation on the r.h.s. of (16) is
the partition function of an Ising model.

Proposition 4. Fixing any vertex i ∈ V it holds:

ZG = xi Z̃G−i +
∑

j∼i

wij Z̃G−i−j , (17)

where:

– in the partition function Z̃G−i the monomer activity xk is replaced by xk eJik

for every vertex k (notice that only the neighbours of i actually change their
activities);

– in the partition function Z̃G−i−j the dimer activity wkk′ is replaced by

wkk′ eJik+Jik′+Jjk+Jjk′

for all vertices k, k′ (notice that only the neighbours of i or j actually change
their activities).

The relation (17) can be obtained directly from the definition: the first term
on the r.h.s. corresponds to a monomer on i, while the following terms correspond
to a dimer on ij for some j neighbour of i.

The hard-core interaction is not sufficient to cause a phase transition, but
adding also the imitative interaction the system can have phase transitions [6,15,
16,32]: in Sect. 4 we will study this phase transition on the complete graph. The
location of the zeros of the partition function in the complex plane in presence
of imitation is an open problem.

3 Quenched Models: Erdős–Rényi and Random Field

In this section we consider monomer-dimer models with pure hard-core interac-
tions in some random environment: the randomness is either in the structure of
the graph or in the activities. In the first case we considered a class of random
graphs that have locally tree-like structure and finite variance degree distribu-
tion [2]: this is the same for which the ferromagnetic Ising model was rigorously
solved by Dembo and Montanari [18,20], using the local weak convergence strat-
egy developed in [9]. For the sake of clarity, in this review we have chosen to
present the results on the Erdős–Rényi random graph, but they easily extend
for example to random regular graphs and configuration models.

3.1 Self-averaging for Monomer-Dimer Models

One of the most important property describing the effects of randomness in sta-
tistical mechanics models is the self-averaging of physical quantities. Under quite
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general hypothesis a monomer-dimer model with independent random weights
has a self-averaging pressure density [5].

Let w
(N)
ij ≥ 0 , 1 ≤ i < j ≤ N , N ∈ N, and xi > 0 , i ∈ N, be independent

random variables and consider the (random!) partition function

ZN =
∑

D∈DN

∏

ij∈D

w
(N)
ij

∏

i∈MN (D)

xi .

Since the dimer weights may depend on N and may take the value zero, this
framework is very general. Denote simply by E[ · ] the expectation with respect
to all the weights and assume

sup
N

sup
ij

E[w(N)
ij ] =: C1 < ∞ , sup

i
E[xi] =: C2 < ∞ , sup

i
E[x−1

i ] =: C3 < ∞ .

The pressure density pN := 1
N log ZN is a random variable with finite expecta-

tion, indeed

N pN

{
≥ log

∏N
i=1 xi =

∑N
i=1 log xi ≥ ∑N

i=1(1 + x−1
i ) ∈ L1(P)

≤ ZN − 1 ∈ L1(P)
.

The following theorem shows that in the limit N → ∞ the pressure density pN

concentrates around its expectation.

Theorem 2 (see [5]). For all t > 0, N ∈ N, q ≥ 1

P
( |pN − E[pN ]| ≥ t

) ≤ 2 exp
(

− t2 N

4 q2 log2 N

)
+ (a + bN)N1−q , (18)

where a := 4 + 2C2C3 , b := 2C1C
2
3 . As a consequence, choosing q > 3,

|pN − E[pN ]| −−−−→
N→∞

0 P-almost surely .

If the random variables w
(N)
ij , xi, x−1

i are bounded, then one can obtain an
exponential rate of convergence instead of (18).

3.2 Erdős–Rényi Random Graph

Let GN be a Erdős–Rényi random graph over N vertices: each pair of vertices
is connected by an edge independently with probability c/N > 0. Denote by
ZN (x) the partition function of a monomer-dimer model with monomer activity
x > 0 and pure hard-core interaction on the graph GN :

ZN (x) =
∑

D∈DGN

xN−2|D| ,

〈 · 〉GN ,x will be the corresponding Gibbs expected value. The pressure density is

pN (x) :=
1
N

log ZN (x) ,

and the monomer density is
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mN (x) :=
〈N − 2|D|

N

〉

N,x
= x

∂pN

∂x
(x) .

Since the set of configurations DGN
is random, the partition function, the pres-

sure density and the monomer density are random variables and the Gibbs mea-
sure is a random measure. This randomness is treated as quenched with respect
to the thermal fluctuations.

Theorem 3 (see [2,42]). Almost surely and for all x > 0 the monomer density
and the pressure density converge in the thermodynamical limit. Precisely:

mN (x) a.s.−−−−→
N→∞

E[M(x)] (19)

pN (x) a.s.−−−−→
N→∞

E

[
log

M(x)
x

]
− c

2
E

[
log

(
1 +

M1(x)
x

M2(x)
x

)]
. (20)

The law of the random variable M(x) is the only solution supported in [0, 1] of
the following fixed point distributional equation:

M
d=

x2

x2 +
∑Δ

i=1 Mi

(21)

where (Mi)i∈N are i.i.d. copies of M and Δ is an independent Poisson(c)-
distributed random variable. The limit monomer density and the limit pressure
density are analytic functions of the activity x > 0 (Fig. 3).

The expression for the pressure on the right hand side of (20) was provided
by Zdeborová and Mézard [46] via the theoretical physics method of cavity fields.
This theorem provides a complete rigorous proof of their conjecture, partially
studied in [13,42] (Fig. 2).

The proof of Theorem 3 relies on the locally tree-like structure of the Erdős–
Rényi random graphs. Precisely fix a radius r ∈ N and for any vertex v denote by
[GN , v]r the ball of center v and radius r in the graph GN ; then consider a ran-
dom tree T rooted at the vertex o and with independent Poisson(c)-distributed
offspring sizes; it holds (see [19]):

1
N

∑

v∈GN

F
(
[GN , v]r

) a.s.−−−−→
n→∞ EF

(
[T, o]r

)

for every bounded real function F invariant under rooted graph isomorphisms.
Clearly the monomer density rewrites as an average over the vertices:

mN (x) =
1
N

∑

v∈GN

Mx(GN , v) , where

Mx(GN , v) := 〈1(v is a monomer)〉GN ,x .

A priori Mx(GN , v) depends on the whole graph GN , but it can be substituted
by local quantities thanks to the following correlation inequalities:



50 D. Alberici et al.

depth 4

depth 6

depth 5

depth 3

complete graph

binary tree

monomer density

monomer activity x
0.5 1.0 1.5 2.0
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0.8

Fig. 2. Upper (even depths) and lower (odd depths) bounds for the limit monomer den-
sity m(x) = limN→∞ mN (x) versus the monomer activity x, in the Erdős–Rényi case
with c = 2. The binary tree (continuous line) and the complete graph (dashed line) cases
are also shown. The distributional recursion (21) is iterated a finite number r of times
with initial values Mi ≡ 1: the obtained random variable Mx(r) represents the root
monomer probability of the random tree [T, o]r. For values of x = 0.01, 0.1, 0.2, . . . , 2,
the random variables Mx(r), r = 3, 4, 5, 6 are simulated numerically 10000 times and
an empirical mean is taken in order to approximate E[Mx(r)]. E[Mx(r)] provides an
upper/low approximation of m(x) when r is even/odd.

Lemma 1 (Correlation inequalities) Let (G, o) be a rooted graph, let r ∈ N.
If [G, o]2r+1 is a tree, then

Mx([G, o]2r+1) ≤ Mx(G, o) ≤ Mx([G, o]2r) .

Therefore one can deduce that

mN (x) a.s.−−−−→
N→∞

lim
r→∞EMx

(
[T, o]r

)
(22)

provided the existence of the limr→∞. In this way the problem on random graphs
is reduce to the study of the root monomer probability on a random tree. As
usual in Statistical Mechanics working on trees is much easier since there are no
loops in the interactions.

The problem is now approached by means of the Heilmann–Lieb recursion.
By Lemma 1, the sequences of monomer probabilities respectively at even and
odd depths of the tree are monotonic:

Mx

(
[T, o]2r

) ↗ Meven(x) , Mx

(
[T, o]2r+1

) ↘ Modd(x) as r → ∞ .



Mean-Field Monomer-Dimer Models. A Review 51

The relation (11) for partition functions gives the following relation for root
monomer probabilities:

(
Meven(x)
Modd(x)

)
d=

⎛

⎝
x2

x2+
∑Δ

i=1 M
(i)
odd(x)

x2

x2+
∑Δ

i=1 M
(i)
even(x)

⎞

⎠ (23)

where (M (i)
even, M

(i)
odd), i ∈ N, are i.i.d. copies of (Meven, Modd). A direct compu-

tation from Eq. (23) shows that

E[|Meven(x) − Modd(x)|] ≤ c2

x4
E[|Meven(x) − Modd(x)|]

therefore Meven(x) = Modd(x) almost surely for every x >
√

c . Now allow the
monomer activity to take complex values in H+ = {z ∈ C | �(z) > 0}. This has
no physical or probabilistic meaning, but it is a technique to obtain powerful
results by exploiting complex analysis. Using the Heilmann–Lieb recursion one
can prove that for any rooted graph (G, o), the function Mz(G, o) is analytic
in z ∈ H+ and is uniformly bounded as |Mz(G, o)| ≤ |z|/�(z). It follows that
the limit functions Meven(z) and Modd(z) are analytic on H+. Therefore by
uniqueness of the analytic continuation

Meven(x) = Modd(x) =: M(x) almost surely for every x > 0

and (19) follows by (22). M(x) satisfies the distributional fixed point Eq. (21).
The solution supported in [0, 1] is unique, since for any random variable M ′ ∈
[0, 1] that satisfies (21) it can be shown by induction on r ∈ N that

Mx

(
[T, o]2r+1

) d≤ M ′ d≤ Mx

(
[T, o]2r

)
.

These are the ideas to prove the convergence of the monomer density. To
complete the Theorem 3 it remains to prove the convergence of the pressure
density. The convergence of pN (x) to some function p(x) is guaranteed by the
convergence of its derivative mN (x)/x together with the bounds 6. Call p̃(x)
the function defined by the right hand side of (20), which can be “guessed” by
the heuristic method of energy shifts. Direct computations show that x p̃′(x) =
m(x) = x p′(x) for every x > 0 and limx→∞ p̃(x) − log x = 0 = limx→∞ p(x) −
log x . Therefore p = p̃.

3.3 Random Field

For the class of models described above the randomness is in the graph structure.
The model below instead introduces a randomness in the monomer activities and
is useful to describe impurities. Consider the pure hard-core monomer-dimer
model defined in Definition 2 and assume that G = (V,E) is the complete graph
with N vertices, the monomer activities (xi)i∈V are i.i.d. positive random vari-
ables and the dimer activity is uniform wij = w/N > 0 ∀i �= j ∈ V . The
partition function is
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ZN =
∑

D∈DN

( w

N

)|D| ∏

i∈M(D)

xi . (24)

Notice that now the partition function and the pressure density 1
N log ZN are

random variables. The first important fact is that under the assumptions of
Theorem 2 the pressure density is self-averaging, namely it converges almost
surely to its expectation usually called quenched pressure density. The Gaussian
representation for the partition function (7) and a careful application of the
Laplace method allows us to find its limiting value. More precisely the next
theorem shows that thermodynamic limit the quenched pressure density exists
and is given by a one-dimensional variational principle, which admits a unique
solution.

Theorem 4 (see [5]). Let w > 0. Let xi > 0, i ∈ N be i.i.d. random variables
with Ex[x] < ∞ and Ex[(log x)2] < ∞. Then:

∃ lim
N→∞

1
N

Ex[ log ZN ] = sup
ξ≥0

Φ(ξ) ∈ R

where

Φ(ξ) := − ξ2

2w
+ Ex[ log(ξ + x)] ∀ ξ ≥ 0 ,

the function Φ reaches its maximum at a unique point ξ∗ which is the only
solution in [0,∞[ of the fixed point equation

ξ = Ex

[
w

ξ + x

]
. (25)

Theorem 4 allows to compute the main macroscopic quantity of physical
interest, that is the dimer density, in terms of the positive solution ξ∗ of the
fixed point Eq. (25).

Corollary 2. In the hypothesis of Theorem4 the limiting pressure per particle

p(w) := lim
N→∞

1
N

Ex

[
log ZN (w)

]

exists and is a smooth function of w > 0. Moreover the limiting dimer density

d := lim
N→∞

1
N

Ex

[〈 |D| 〉
N

]
= w

d p

dw
=

(ξ∗)2

2w
.

A detailed proof of Theorem4 can be found in [5]. Here we mention the main
ideas. The first step is to use the Gaussian representation (7) for the partition
function (24) that gives

ZN = Eξ

[ N∏

i=1

(ξ + xi)
]

, (26)
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where ξ is a one-dimensional Gaussian random variable with mean 0 and variance
w/N . Indeed by Proposition 1, ZN = Eg

[ ∏N
i=1(gi+xi)

]
where g = (g1, . . . , gN ) is

an N -dimensional Gaussian random vector with mean 0 and constant covariance
matrix (w/N)i,j=1,...,N . It is easy to check that the vector g has the same joint
distribution of the vector (ξ, . . . , ξ) and the identity (26) follows. It is important
to notice how easily, in this mean-field framework, the Gaussian representation
reduces the degrees of freedom of the system. By explicitly rewriting (26) as

ZN =
√

N√
2πw

∫

R

e− N
2w ξ2

N∏

i=1

(ξ + xi) dξ . (27)

and considering the function

fN (ξ) := e− N
2w ξ2

N∏

i=1

(ξ + xi) ∀ ξ ∈ R

one sees that Theorem 4 follows by approximating eΦ in the integral (27) with
the Laplace method.

4 The Mean-Field Case

Let h ∈ R and J ≥ 0 and consider the imitative monomer-dimer model in
Definition 3 within the following assumptions: G = (V,E) is the complete graph
with N vertices and ∀i �= j ∈ V we set wij = 1/N , xi ≡ eh and Jij = J/N .
Since the number of edges is of order N2, in order to keep the logarithm of the
partition function of order N , a normalisation of the dimer activity as 1/N (see
Remark 4) and the imitation coefficient as J/N are needed.

One can express the Hamiltonian in terms of occupancy variables as

HN (α) := −h

N∑

i=1

αi − J

N

∑

1≤i<j≤N

(
αi αj + (1 − αi) (1 − αj)

)
(28)

for every monomer-dimer configuration on the complete graph α ∈ DN . The
partition function is

ZN :=
∑

α∈DN

N−DN exp(−HN ) ,

where DN :=
∑

1≤i<j≤N αij represents the total number of dimer for a given
configuration α ∈ DN . Observe that the only relevant quantity in this setting is
actually the total number of monomers in a given monomer-dimer configuration

MN :=
N∑

i=1

αi
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indeed the hardcore constraint (2) implies that MN +2DN = N and the Hamil-
tonian (28) is actually a function of MN only. We denote the corresponding
Gibbs measure as

μN (α) :=
N−DN (α) exp(−HN (α))

ZN
∀α ∈ DN (29)

and the expectation with respect to the measure μN is denoted by 〈 · 〉N . In
particular, setting mN := 1

N

∑N
i=1 αi, the average monomer density is

〈mN 〉N =
∑

α∈DN

∑N
i=1 αi

N

exp(−HN (α))
ZN

=
∂

∂h

log ZN

N
.

This model has been initially studied in [6,7], where the behaviour of the
pressure and monomer densities in the thermodynamic limit is analysed.

Theorem 5 (see [6]). Let h ∈ R, J ≥ 0. Then there exists

p := lim
N→∞

log ZN

N
= sup

m
ψ(m) (30)

the sup can be taken indifferently over m ∈ [0, 1] or m ∈ R and

ψ(m,h, J) := −Jm2 +
J

2
+ p(0)(2Jm + h − J) (31)

where for all t ∈ R

p(0)(t) := −1
2
(
1 − g(t)

) − 1
2

log
(
1 − g(t)

)
,

g(t) :=
1
2

(
√

e4t + 4 e2t − e2t) . (32)

Furthermore the function ψ(m) attains its maximum in (at least) one point m∗ =
m∗(h, J) ∈ (0, 1), which is a solution of the consistency equation

m = g
(
(2m − 1)J + h

)
.

At each value of the parameters (h, J) such that h �→ m∗(h, J) is differentiable,
the monomer density admits thermodynamic limit

lim
N→∞

〈mN 〉N = m∗ .

In order to prove Theorem 5, first we need to deal with the case J = 0,
then the limit (30) with J > 0 follows by a convexity argument introduced by
Guerra [29] for the Curie–Weiss model. At J = 0 the model reduces to the pure
monomer-dimer model of Definition 2 on the complete graph with xi = x =
eh > 0, wij = 1/N > 0 ∀i �= j ∈ V . Let us denote by Z

(0)
N and 〈mN 〉(0)N
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respectively the partition function and the average monomer density at J = 0;
it holds

lim
N→∞

1
N

log Z
(0)
N = p(0)(h) (33)

lim
N→∞

〈mN 〉(0)N = g(h) .

The function p(0) is analytic thus at J = 0 there are no phase transition in
agreement with the general result of Heilman–Lieb [30]. The limit (33) can be
obtained in two different ways:

(1) by a combinatorial computation, since on the complete graph it is possible
to compute explicitly the number of monomer-dimer configurations with a
given number of monomers;

(2) by using the Gaussian representation (7) of the partition function and the
Laplace method.

The latter method furnish a better estimation of the convergence (33)

Z
(0)
N (h) ∼

N→∞
exp

(
Np(0)(h)

)
√

2 − g(h)
, (34)

which will be fundamental in the study of the fluctuations of MN (Sect. 5).

Remark 6. The limiting pressure density p can also be expressed as a different
variational problem, equivalent to that of Theorem5:

p = sup
m

(
s(m) − ε(m)

)
(35)

with
s(m) := −m log m − 1 − m

2
log(1 − m) +

1 + m

2
,

ε(m) := −J m2 − (h − J)m − J

2
.

(36)

The variational problem (35) can be obtained directly by the combinatorial
computation mentioned before. The functions s and ε in (36) are the entropy
and energy densities respectively.

The properties of the solution(s) of the one-dimensional variational problem
(30) appearing in Theorem5 determine the thermodynamic properties of the
model. In particular we are interested in the value(s) of m = m∗(h, J) where
the maximum is reached, since it can be interpreted as the limiting value of the
monomer density.

The function m∗ (see [6]) is single-valued and smooth on the plane (h, J)
with the exception of an implicitly defined open curve h = γ(J) and its end-
point (hc, Jc). Instead on γ there are two global maximum points m1 < m2 that
correspond to the dimer phase and the monomer phase respectively. Crossing
the curve γ in the phase plane the order parameter m∗ presents a jump dis-
continuity: in other words a second order phase transition occurs and γ is the
coexistence curve. The point (hc, Jc) is the critical point of the system, where
m∗ is continuous but not differentiable.
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Fig. 3. Phase space (h, J). The curve γ separates the values (h, J) for which the global
maximum point m∗(h, J) of m �→ p̃ (m, h, J) jumps between two values m1 < m2. This
entails a discontinuity of m∗(h, J) along the coexistence curve γ.

Remark 7. We notice that the techniques developed in [6] do not allow us to con-
clude the existence of the limiting monomer density on the coexistence curve γ.
In the standard mean-field ferromagnetic model (Curie–Weiss) the existence of
the magnetization on the coexistence curve (h = 0) follows directly by the global
spin flip symmetry, a property that we do not have in the present case.

The non analytic behaviour of m∗(h, J) near the critical point is described
by its critical exponents.

Theorem 6 (see [6]). Consider the global maximum point m∗(h, J) of the
function m �→ p̃ (m,h, J) defined by (35). Set mc := m∗(hc, Jc). The critical
exponents of m∗ at the critical point (hc, Jc) are:

β = lim
J→Jc+

log |m∗(δ(J), J) − mc|
log(J − Jc)

=
1
2

along any curve h = δ(J) such that δ ∈ C2([Jc,∞[), δ(Jc) = hc, δ′(Jc) = γ′(Jc)
(i.e. if the curve δ has the same tangent of the coexistence curve γ at the critical
point);

1
δ

= lim
J→Jc

log |m∗(δ(J), J) − mc|
log |J − Jc| =

1
3

1
δ

= lim
h→hc

log |m∗(h, δ(h)) − mc|
log |h − hc| =

1
3
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along any curve h = δ(J) such that δ ∈ C2(R+), δ(Jc) = hc, δ′(Jc) �= γ′(Jc) or
along a curve J = δ(h) such that δ ∈ C2(R), δ(hc) = Jc, δ′(hc) = 0 (i.e. if the
curve is not tangent to γ at the critical point).

Theorem 6 proves that the model belongs to the same universality class of the
mean-field ferromagnet.

5 Distributional Limit Theorems at the Critical Point

In this section we study the distributional limit of the random variable number
of monomers with respect to the Gibbs measure on the complete graph [3,4].
We show that a law of large numbers holds outside the coexistence curve γ,
whereas on γ the limiting distribution is a convex combination of two Dirac
deltas representing the two phases (Theorems 7 and 8). Moreover we show that
a central limit theorem holds outside γ ∪ (hc, Jc) , while at the critical point a
normalisation of order N−3/4 for the fluctuations is required and the limiting
distribution is Ce−cx4

dx (Theorems 7 and 9).
In [3] we follow the Gaussian convolution method introduced by Ellis and

Newman for the mean-field Ising model (Curie–Weiss) in [22–24] in order to
deal with the imitative potential. An additional difficulty stems from the fact
that even in the absence of imitation the system keeps an interacting nature due
to the presence of the hard-core interaction: we use the Gaussian representation 1
to decouple the hard-core interaction.

We focus on the behaviour of the random variable MN =
∑N

i=1 αi (number of
monomers) with respect to the Gibbs measure (29) with a suitable scaling when
N → ∞ . From now on δx is the Dirac measure centred at x, N (

x, σ2
)

denotes

the Gaussian distribution with mean x and variance σ2 and D→ denotes the
convergence in distribution with respect to the Gibbs measure μN as N → ∞ .

At J = 0 the law of large numbers and the central limit theorem hold true:

Theorem 7 (see [3]). At J = 0 the following results hold:

MN

N

D→ δg(h)

and
MN − N g(h)√

N

D→ N
(

0,
∂g

∂h
(h)

)
(37)

where g is the function defined by (32).

Notice that, even if J = 0, (37) is not a consequence of the standard central
limit theorem, indeed MN is not a sum of i.i.d. random variables because of the
presence of the hard-core interaction. Theorem 7 follows from the recent results
of Lebowitz–Pittel–Ruelle–Speer [37]. A different proof is presented here which
includes also the general value of J > 0. We should mention that a slightly
improvement of the result presented has been obtained with different methods
in [17].
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Consider the asymptotic behaviour of the distribution of the number of
monomers MN with respect to the Gibbs measure μN . The law of large numbers
holds outside the coexistence curve γ, on γ instead it breaks down in a convex
combination of two Dirac deltas. Precisely it holds

Theorem 8 (see [3]).

(i) In the uniqueness region (h, J) ∈ (
R × R+

) \ γ, denoting by m∗ the unique
global maximum point of the function p̃(m) defined by (31), it holds

MN

N

D→ δm∗

(ii) On the coexistence curve (h, J) ∈ γ, denoting by m1,m2 the two global
maximum points of p̃(m), it holds

MN

N

D→ �1 δm1 + �2 δm2 ,

where �l = bl

b1+b2
, bl = (−λl(2 − ml))−1/2 and λl = ∂2p̃

∂m2 (ml) , for l = 1, 2.

Remark 8. We notice that, on the contrary of what happens for the Curie–Weiss
model, the statistical weights �1 and �2 on the coexistence curve are in general
different, furthermore they are not simply given in terms of the second derivative
of the variational pressure p̃ .

The first fact can be seen numerically, and analytically one can compute

lim
J→∞

�1(J)
�2(J)

=
1√
2

.

The second fact can be interpreted as follows: the relative weights �l have two
contributions reflecting the presence of two different kinds of interaction. The
first contribution λl is given by the second derivative of the variational pressure
(31), while the second contribution 2 − ml comes from the second derivative of
the pressure of the pure hard-core model.

The central limit theorem holds outside the union of the coexistence curve
γ and the critical point (hc, Jc). At the critical point its breakdown results in a
different scaling N3/4 and in a different limiting distribution Ce−cx4

dx . Precisely

Theorem 9 (see [3]).

(i) Outside the coexistence curve and the critical point (h, J) ∈ (
R×R

+
) \ (

γ ∪
(hc, Jc)

)
, it holds

MN − Nm∗

N1/2

D→ N
(
0, σ2

)

where σ2 = −λ−1 − (2J)−1 > 0 and λ = ∂2p̃
∂m2 (m∗) < 0 .
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(ii) At the critical point (hc, Jc), it holds

MN − Nmc

N3/4

D→ C exp
(

λc

24
x4

)
dx

where λc = ∂4p̃
∂m4 (mc) < 0, mc ≡ m∗(hc, Jc) and C−1 =

∫
R

exp(λc

24x4)dx .

The first step to obtain these results is to perform a Gaussian convolution, fol-
lowing the ideas of Ellis and Newmann [22,23], in order to decouple the imitative
interaction. Precisely taking W ∼ N (0, (2J)−1) a random variable independent
of MN for all N ∈ N, for all η ≥ 0 and u ∈ R, a direct computation shows that
the distribution of

W

N1/2−η
+

MN − Nu

N1−η

is
CN exp

(
N p̃N

( x

Nη
+ u

))
dx ,

where C−1
N =

∫
R

exp
(
N p̃N ( x

Nη + u)
)
dx ,

p̃N (x) := −Jx2 +
J

2
+ p

(0)
N (2Jx + h − J)

and p
(0)
N (t) = 1

N log Z
(0)
N (t) denotes the pressure density of the monomer-dimer

system at imitation potential J = 0 and monomer field t. Therefore we are
interested in the limit as N → ∞ of quantities like

∫

R

exp
(
N p̃N

( x

Nη
+ u

))
φ(x) dx , φ bounded continuous

which depends crucially on the scaling properties of p̃N near its global maximum
point(s). Thanks to the Gaussian representation at J = 0, and precisely from
(34), we know that p̃N converges to p̃ in a very strong way, which allows to
replace the Taylor expansion of p̃N by that of p̃.

6 Conclusions and Outlooks

The relation of the class of models presented so far with the physically relevant
ones in finite dimensional lattices represents an interesting research problem that
can be carried out following the steps of the studies done for the ferromagnetic
spin models [34,44]. We want to point out, moreover, that the range of direct
applications of mean-field models like these ones is quite developed and quickly
expanding. To give a few examples: the diluted mean-field case studied in Sect. 3
is directly related to the matching problem studied in computer sciences [35].
The model with attractive interaction studied in Sect. 5 has been applied to the
social sciences [10]. There is also a growing set of applications of monomer-dimer
models to the study of socio-technical data from novel communication systems
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like voip conference calls and messaging [8]. At each single time every user cannot
be in more than a call, i.e. the occupation number fullfills a hard-core constraint.
While the old style phone calls were well described by a monomer-dimer system,
novel technological devices need a wider space of higher dimensional polymers
that allow for the presence of multiple individuals in the same virtual room: the
monomer corresponds to a silent user, the dimer is a two-body conversation,
the trimer a three-body and so on. The models to be investigated in this case
are therefore polymer models with hard-core interaction on hypergraphs with
no physical dimension, i.e. better described as some form of dilution of the
complete hypergraph. The mean-field case and its diluted versions are therefore
at the heart of the problem and not only mere approximations.
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Abstract. Fyodorov, Hiary & Keating established an intriguing con-
nection between the maxima of log-correlated processes and the ones of
the Riemann zeta function on a short interval of the critical line. In par-
ticular, they suggest that the analogue of the free energy of the Riemann
zeta function is identical to the one of the Random Energy Model in spin
glasses. In this paper, the connection between spin glasses and the Rie-
mann zeta function is explored further. We study a random model of the
Riemann zeta function and show that its two-overlap distribution corre-
sponds to the one of a one-step replica symmetry breaking (1-RSB) spin
glass. This provides evidence that the local maxima of the zeta function
are strongly clustered.

Keywords: Riemann zeta function · Disordered systems · Spin glasses

1 Introduction and Main Result

1.1 Background

The Riemann zeta function is defined on C by

ζ(s) =
∑

n≥1

1
ns

=
∏

p primes

(
1 − p−s

)−1 if Re s > 1, (1)

and can be analytically continued to the whole complex plane by the functional
equation

ζ(s) = χ(s)ζ(1 − s), χ(s) = 2sπs−1 sin
(π

2
s
)

Γ(1 − s).

L.-P. Arguin—Supported by NSF CAREER 1653602, NSF grant DMS-1513441, and a
Eugene M. Lang Junior Faculty Research Fellowship.
W. Tai—Partially supported by NSF grant DMS-1513441.

c© Springer Nature Singapore Pte Ltd. 2019
V. Sidoravicius (Ed.): Sojourns in Probability Theory
and Statistical Physics - I, PROMS 298, pp. 63–88, 2019.
https://doi.org/10.1007/978-981-15-0294-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0294-1_3&domain=pdf
https://doi.org/10.1007/978-981-15-0294-1_3


64 L.-P. Arguin and W. Tai

Trivial zeros are located at negative even integers where χ(s) = 0. The non-
trivial zeros are restricted to the critical strip 0 ≤ Re s ≤ 1. The Riemann
hypothesis states that they all lie on the critical line Re s = 1/2. A weaker
statement, yet with deep implications on the distribution of the primes, is the
Lindelöf hypothesis which stipulates that the maximum of ζ on a large interval
[0, T ] of the critical line grows slower than any power of T , i.e. ζ(1/2 + iT ) is
O(T ε) for any ε > 0, see e.g. [41].

Mathematical physics has provided several important insights in the study
of the Riemann zeta function over the years. We refer the reader to [39] for
a broad discussion on this topic. We briefly highlight three contributions from
statistical mechanics and probability. First, there are deep connections between
the statistics of eigenvalues of random matrices and the zeros of zeta as exem-
plified by the Montgomery’s pair correlation conjecture, see for example [13].
Second, the Riemann hypothesis can be recast in the framework of Ising models
of statistical mechanics where it bears a resemblance to the Lee–Yang theorem.
This perspective was investigated in details by Newman [28–30]. It led to an
equivalent reformulation of the Riemann hypothesis in terms of the exact value
of the de Bruijn–Newman constant [31], see [38] for a numerical estimate of the
constant and [35] for a proof that the constant is non-negative. Third, Fyodorov
et al. [21] and Fyodorov and Keating [22] recently unraveled a striking connec-
tion between the local statistics of the large values of the Riemann zeta function
on the critical line and the extremes of a class of disordered systems, the log-
correlated processes, that includes among others branching Brownian motion
and the two-dimensional Gaussian free field. This connection has also been
extended recently to the theory of Gaussian multiplicative chaos by Saksman and
Webb [36,37].

The Fyodorov–Hiary–Keating conjecture is as follows [21,22]: if τ is sampled
uniformly on a large interval [T, 2T ], then the maximum on a short interval, say
[0, 1], around τ is

max
h∈[0,1]

log |ζ(1/2 + i(τ + h)| = log log T − 3
4

log log log T + MT , (2)

where (MT ) is a sequence of random variables converging in distribution. The
deterministic order of the maximum corresponds exactly to the one of a log-
correlated process, such as a branching random walk and the two-dimensional
Gaussian free field, see for example [1,25] for more background on this class
of processes. The precise value of the leading order can be predicted heuris-
tically since the process for log ζ has effectively log T distinct values on [0, 1]
(because there are on average log T zeros on [0, 1], see for example [41]), and
the marginal distribution of log |ζ(1/2 + i(τ + h))| should be close to Gaussian
with variance 1

2 log log T as predicted by Selberg’s Central Limit Theorem [34].
The log-correlations already appear at the level of the typical values from the
multivariate CLT proved in [12]. The first order of the Conjecture (2) was proved
recently in parallel: conditionally on the Riemann hypothesis in [27], and uncon-
ditionally in [3]. The evidence in favor of the conjecture laid out by Fyodorov
and Keating [22] suggests that the large values of the Riemann zeta function
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Fig. 1. The value of − log |ζ(1/2 + i(T + h))| for T = 10000 and h ∈ [0, 50].

locally behaves like a disordered system of the spin-glass type characterized by
an energy landscape with multiple minima, see Fig. 1. In particular, by consid-
ering − log |ζ(1/2 + i(τ + h))| as the energy of a disordered system on the state
space [0, 1], they predict that the analogue of the free energy is in the limit

lim
T→∞

1
log log T

log

(
log T ·

∫ 1

0

∣∣∣∣ζ
(

1
2

+ i(τ + h)
)∣∣∣∣

β

dh

)
=

{
1 + β2

4 ifβ < 2,

β if β ≥ 2,

similarly to a Random Energy Model (REM) with log T independent Gaussian
variables of variance 1

2 log log T .
In this paper, we explore the connection with spin glasses further by provid-

ing evidence that log |ζ| behaves locally like a spin glass with one-step replica
symmetry breaking (1-RSB), cf. Theorem 1. More precisely, we study a simple
random model introduced by Harper [23] for the large values of log |ζ|. We show
that two points sampled from the Gibbs measure at low temperature have cor-
relation coefficients (or overlap) 0 or 1 in the limit, similarly to a 1-RSB spin
glass. We expect that part of our approach could be extended to prove a similar
result for the Riemann zeta function itself as stated in Conjecture 1 below.

1.2 The Model and Main Result

Let (Up, p primes) be IID uniform random variables on the unit circle in C. We
write E for the expectation over the Up’s. We study the stochastic process

Xh =
∑

p≤T

Re(Upp
−ih)

p1/2
, h ∈ [0, 1]. (3)

We drop the dependence on T in the notation for simplicity. The process (Xh, h ∈
[0, 1]) is a good model for the large values of log |ζ(1/2 + i(τ + h))|, h ∈ [0, 1],
see [2,23,40] for more details. For example, it is known that the deterministic
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order of maxh∈[0,1] Xh corresponds to the one in (2), as proved in [2]. Roughly
speaking, the process Xh corresponds to the leading order of the logarithm of
the Euler product (1) with the identification

(
p−iτ , p primes

)←→ (Up, p primes) .

It is easily checked by computing the joint moments that the above identification
is exact as T → ∞ in the sense of finite-dimensional distribution.

The covariance can be calculated using the explicit distribution of the Up’s:

E[XhXh′ ] =
∑

p≤T

∫ 2π

0

1
2

(
ei(θ−h log p) + e−i(θ−h log p)

)

× 1
2

(
ei(θ−h′ log p) + e−i(θ−h′ log p)

) dθ

2π

=
1
2

∑

p≤T

cos(|h − h′| log p)
p

. (4)

We are interested in the correlation coefficient or overlap (in the spin glass
terminology):

ρ(h, h′) =
E[XhXh′ ]√
E[X2

h] E[X2
h′ ]

, for a given pair (h, h′). (5)

Any sum over primes can be estimated using the Prime Number Theorem [26],
which gives the density of the primes up to very good errors,

#{p ≤ x : p prime} =
∫ x

2

1
log y

dy + O(xe−c
√

log x). (6)

(The error term, which is already more than sufficient for our purpose, is
improved under the Riemann hypothesis.) In particular, this can be used to
rewrite the covariances as (see Lemma 1 below for details),

E[X2
h] =

1
2

∑

p≤T

p−1 =
1
2

log log T +O(1) E[XhXh′ ] =
1
2

log |h−h′|−1 +O(1).

(7)
The process (Xh) is said to be log-correlated, since the covariance decays approx-
imately like the logarithm of the distance. The correlation coefficients as a func-
tion of the distance become

ρ(h, h′) =
log |h − h′|−1

log log T
+ o(1) , for |h − h′| ≥ (log T )−1. (8)

Throughout the paper, we will use the notation f(T ) = o(g(T )) if f(T )/g(T ) → 0
and f(T ) = O(g(T )) if f(T )/g(T ) is bounded. We will sometimes use f(T ) �
g(T ) for short if f(T ) = O(g(T )) (the Vinogradov notation).
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The main result of this paper is the limiting distribution of the correlation
coefficient when h and h′ are sampled from the Gibbs measure. This is referred
to as the two-overlap distribution in the spin-glass terminology. We denote the
Gibbs measure by

Gβ,T (A) =
∫

A

eβXh

Zβ,T
dh Zβ,T =

∫ 1

0

eβXh dh. (9)

Theorem 1. For every β > 2 and for any interval I ⊆ [0, 1],

lim
T→∞

E

[
G×2

β,T {(h, h′) : ρ(h, h′) ∈ I}
]

=
2
β
1I(0) +

(
1 − 2

β

)
1I(1).

where 1I is the indicator function of the set I. In other words, when h, h′ are sam-
pled independently from the Gibbs measure Gβ,T , the random variable ρ(h, h′) is
Bernoulli-distributed with parameter 2/β in the limit T → ∞.

The limit is exactly the two-overlap distribution of a 1-RSB spin glass. In view
of the relation (8) between the correlation coefficient and the distance |h − h′|,
the result means that the large values of Xh must lie at a distance O(1) or
O((log T )−1). The mesoscopic distances (log T )−α, 0 < α < 1 are effectively
ruled out. Similar results were obtained for the REM model [18], and log-
correlated processes [4,7,8,14,15,19,24,32].

In the spirit of the Fyodorov–Hiary–Keating conjecture, Theorem1 suggests
that log |ζ| exhibits 1-RSB for β large enough.

Conjecture 1. Consider

Gβ(t) = |ζ(1/2 + it)|β Zβ(t) =
∫ 1

0

Gβ(t + h)dh.

For β > 2, and any interval I ⊆ [0, 1], if τ is sampled uniformly on [T, 2T ]:

lim
T→∞

E

[∫

{(h,h′):ρ(h,h′)∈I}

Gβ(τ + h) · Gβ(τ + h′)
Zβ(τ)2

dhdh′
]

=
2
β
1I(0) + (1 − 2

β
)1I(1) .

In other words, points h, h′ whose ζ-value is of the order of log log T are at a
distance of O(1) or O((log T )−1).

The above conjecture implies a strong clustering of the high values of ζ at a scale
(log T )−1 akin to the one observed in log-correlated process [4]. In turns, this
phenomenon has important consequences for the joint statistics of high values
which should be Poissonian at a suitable scale as for log-correlated processes
[5,10]. In particular, it is expected that the statistics of the Gibbs weights is
Poisson–Dirichlet [7,8], and that the Gibbs measure converges to an atomic
measure on [0, 1], see [20]. This perspective is studied in [33], and will be discussed
further in a forthcoming paper.
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1.3 Main Propositions and Proof of the Theorem1

The proof of Theorem 1 is based on a method developed for log-correlated Gaus-
sian processes by Arguin and Zindy [7,8]. It was adapted from a method of
Bovier and Kurkova [14,15] for Generalized Random Energy Models (GREM’s).
The main idea is to relate the distribution of the overlaps with the free energy
of a perturbed process. In the present case, the process is not Gaussian and the
method has to be modified. To this aim, consider the process at scale α, for
0 < α < 1, where the sum over primes is truncated at exp((log T )α),

Xh(α) =
∑

log p≤(log T )α

Re(Up p−ih)
p1/2

, h ∈ [0, 1]. (10)

Note that Xh(1) = Xh. For a small parameter |u| < 1, we consider the free
energy of the perturbed process Xh + uXh(α) at scale α:

FT (β;α, u) = E

[
log
∫ 1

0

exp
(
β(Xh + uXh(α)

)
dh

]
. (11)

The connection between the free energy (11) and the distribution of the corre-
lation coefficients is through Gaussian integration by parts. Of course, for the
process Xh, this step is only approximate. It follows closely the work of Carmona
and Hu [16] and Auffinger and Chen [9] on the universality of the free energy
and overlap distributions in the Sherrington–Kirkpatrick model.

Proposition 1. For any 0 < α < 1,
∣∣∣∣
∫ α

0

E

[
G×2

β,T

{
(h, h′) : ρ(h, h′) ≤ y

}]
dy − 2

β2 log log T

∂FT

∂u
(β;α, 0)

∣∣∣∣ = o(1).

The free energy of the perturbed process is calculated using Kistler’s multiscale
second moment method [25]. The treatment is similar to the one of Arguin and
Ouimet [6] for the perturbed Gaussian free field. The same result can be obtained
by adapting the method of Bolthausen et al. [11] and Daviaud [17] to the model
as was done in [7,8]. Kistler’s method is simpler and more flexible. The result is
better stated by first defining

f(β, σ2) =

{
β2σ2/4 if β ≤ 2/σ,

βσ − 1 if β ≥ 2/σ.
(12)

Proposition 2. For every β > 0 and |u| < 1, the following limit holds

lim
T→∞

1
log log T

FT (β;α, u) =

{
f
(
β, (1 + u)2α + (1 − α)

)
if u < 0,

αf(β, (1 + u)2) + (1 − α)f(β, 1) if u ≥ 0.

The theorem follows from the above two propositions. They are proved in
Sects. 3 and 4 respectively. Estimates on the model needed for the proofs are
given in Sect. 2.
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Proof of Theorem 1. We need to show that the distribution of ρ(h, h′) converges
weakly to 2

β δ0 + (1 − 2
β )δ1 where δa stands for the Dirac measure at a. Write

xβ,T (s) for E[G×2
β,T

{
(h, h′) : ρ(h, h′) ≤ s

}
]. By compactness of the space of

probability measures on [0, 1], we can find a subsequence of (xβ,T ) that converges
weakly to xβ as T → ∞. We show that the limit xβ is unique and equals
xβ(s) = 2/β for 0 ≤ s < 1, thereby proving the claimed convergence.

By definition of weak convergence, xβ,T (s) converges to xβ(s) at all points
of continuity of s. Since xβ is non-decreasing, this implies convergence almost
everywhere. Thus, the dominated convergence theorem implies

lim
T→∞

∫ α

0

xβ,T (s) ds =
∫ α

0

xβ(s) ds , for 0 < α < 1. (13)

The left-hand side can be rewritten using Proposition 1 as

lim
T→∞

∫ α

0

xβ,T (s) ds = lim
T→∞

2
β2 log log T

∂FT

∂u
(β;α, 0). (14)

Since
(
((log log T )−1FT (β;α, u)

)
T

is a sequence of convex functions of u, the
limit of the derivatives is the derivative of the limit at any point of differentiabil-
ity. Here the limit of the expectation of the free energy is given by Proposition 2,
for u small enough so that β > 2/σ whenever β > 2,

lim
T→∞

1
log log T

FT (β;α, u) =

⎧
⎨

⎩
β
(
(1 + u)2α + (1 − α)

)1/2

− 1 if u < 0,

αβ(1 + u) + (1 − α)β − 1 if u ≥ 0.
(15)

In particular, the expected free energy is differentiable at u = 0. Therefore,
Eqs. (13), (14) and (15) altogether imply

∫ α

0

xβ(s)ds = α
2
β

, for 0 < α < 1.

This means that for any 0 < α < α′ < 1 we have

1
α′ − α

∫ α′

α

xβ(s) ds =
2
β

.

By taking α′ − α → 0, we conclude from the Lebesgue differentiation theorem
that xβ(s) = 2/β almost everywhere. Since xβ is non-decreasing and right-
continuous, this implies that xβ(s) = 2/β for every 0 ≤ s < 1 as claimed.

2 Estimates on the Model of Zeta

In this section, we gather the estimates on the model of zeta needed for the proof
of Propositions 1 and 2. Most of these results are contained in [2]. We include
them for completeness since we will need to deal with a perturbed version of



70 L.-P. Arguin and W. Tai

the process (Xh). It is important to point out that most (but not all!) of these
estimates can be obtained for zeta itself with some more work, see [3].

The essential input from number theory for the model is the Prime Number
Theorem (6). It shows that the density of the primes is approximately 1/ log p.
This implies, for example, that

∑
p p−a < ∞ for a > 1. The Eq. (7) expressing

the log-correlations for h 
= h′ is straightforward from the following lemma by
taking Δ = |h−h′| and by splitting the sum (4) into the ranges log p ≤ |h−h′|−1

and |h − h′|−1 < log p ≤ log T .

Lemma 1. Let 2 ≤ P < Q < ∞. Then for Δ > 0, we have

∑

P≤p primes≤Q

cos(Δ· log p)
p

=
∫ Q

P

cos(Δ· log v)
v log v

dv + O(e−c
√

log P )

=

{
log log Q − log log P + O(1) forΔ · log Q ≤ 1,

O( 1
Δ·log P ) + O(e−c

√
log P ) forΔ · log P ≥ 1.

(16)

Proof. Denote by Li(x) =
∫ x

2
1

log y dy the logarithmic integal. Write E(x) for
the function of bounded variation π(x) − Li(x) giving the error, and f(x) for
cos(Δ·log x)

x . Clearly, we have

∑

P≤p≤Q

f(p) =
∫ Q

P

f(x)π(dx) =
∫ Q

P

f(x)
log x

dx +
∫ Q

P

f(x)E(dx).

It remains to estimate the error term. By integration by parts,

∫ Q

P

f(x)E(dx) = E(Q)f(Q) − E(P )f(P ) −
∫ Q

P

E(x)f ′(x)dx.

Note that f(x) is of the order of 1/x and f ′(x) is of the order of 1/x2. Since
E(x) = O(xe−c

√
log x), the first claimed equality follows. For the dichotomy in

the second equality, in the case Δ · log Q ≤ 1, we expand the cosine to get after
the change of variable y = log x

∫ Q

P

f(x)
log x

dx =
∫ log Q

log P

cos(Δ · y)
y

dy =
∫ log Q

log P

(
1
y

+ O(Δ2 · y)
)

dy.

The result follows by integration. In the case Δ · log P ≥ 1, we integrate by parts
to get ∫ Q

P

f(x)
log x

dx =
sin(Δ · y)

Δ · y

∣∣∣
log Q

log P
+
∫ log Q

log P

sin(Δ · y)
Δ · y2

dy.

Both terms are O( 1
Δ·log P ) as claimed.
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Proposition 2 gives an expression for the free energy (11) of the perturbed
process at scale α. For simplicity, we denote this process by

X̃h = (1 + u)Xh(α) + Xh(α, 1) for Xh(α, 1) = Xh − Xh(α), h ∈ [0, 1]. (17)

Note that we recover Xh at u = 0. The finite-dimensional distributions of (X̃h)
can be explicitly computed. In fact, it is not hard to compute explicitly the
moment generating function for any increment of (Xh). We will only need the
two-dimensional case.

Proposition 3. Let 0 ≤ α1 < α2 ≤ 1. Consider Xh(α1, α2) = Xh(α2) −
Xh(α1). We have for λ, λ′ ∈ R and h, h′ ∈ [0, 1],

E [exp (λXh(α1, α2) + λ′Xh′(α1, α2)]

= C(λ, λ′) · exp

⎛

⎜⎜⎝
1
2

∑

log p≤(log T )α2

log p>(log T )α1

1
2p

(
λ2 + λ′2 + 2λλ′ cos(|h − h′| log p)

)
⎞

⎟⎟⎠ ,

where C = C(λ, λ′) is bounded if λ and λ′ are bounded uniformly in T .

Proof. The expression can be evaluated explicitly as follows. Since the Up’s are
independent, we can first restrict the computation to a single p. Straightforward
manipulations yield

E

[
exp
(
p−1/2λ · Re(Upp

−ih) + p−1/2λ′ · Re(Upp
−ih′

)
)]

= E
[
exp(aUp + āUp)

]

for a = (2p1/2)−1(λp−ih +λ′p−ih′
). By expanding the exponentials and using the

fact that Up is uniform on the unit circle, we get

E
[
exp(aUp + āUp)

]
=

∞∑

n=0

n∑

k=0

akān−k

n!

(
n

k

)
E[Uk

p U
n−k

p ]

=
∞∑

m=0

1
(m!)2

(
λ2 + λ′2 + 2λλ′ cos(|h − h′| log p)

4p

)m

= 1 +

(
λ2 + λ′2 + 2λλ′ cos(|h − h′| log p)

4p

)
+ O(p−2),

(18)
where the O-term depends on λ, λ′. The second equality follows from the fact
that the expectation is non-zero only if k = n/2. It remains to take the product
over the range of p. The claim then follows from the fact that the sum of p−2 is
finite by (6).

Proposition 3 yields Gaussian bounds in the large deviation regime we are inter-
ested in. Indeed, by Chernoff’s bound (optimizing over λ), it implies that, for
γ > 0,

P (Xh(α1, α2) > γ log log T ) � exp
(

−γ2 log log T

(α2 − α1)

)
= (log T )

−γ2

α2−α1 , (19)
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where we used Lemma 1 to estimate the sum over primes. This supports the
heuristic that Xh(α1, α2) is approximately Gaussian of variance α2−α1

2 log log T .
This implies for X̃h in (17)

P

(
X̃h > γ log log T

)
� exp

(
− γ2 log log T

(1 + u)2α + (1 − α)

)
= (log T )

−γ2

(1+u)2α+(1−α) .

(20)
The same can be done for two points h, h′. Using Lemma 1 again, we get

P (Xh(α1, α2) > γ log log T,Xh′(α1, α2) > γ log log T )

�
⎧
⎨

⎩
exp
(
−γ2 log log T

(α2−α1)

)
if |h − h′| ≤ (log T )−α2 ,

exp
(
−2γ2 log log T

(α2−α1)

)
if |h − h′| ≥ (log T )−α1 .

(21)

This can be interpreted as follows. The increments are (almost) independent if
the distance between the points is larger than the relevant scales of the incre-
ments, and are (almost) perfectly correlated if the distance is smaller than the
scales.

It is important to note that if α1 > 0, then a stronger estimate than the
one of Proposition 3 holds. This is because the sum over primes in (18) is then
negligible since it is the tail of a summable series. This means that the constant
C(λ, λ′) is then 1 + O(1). This gives a precise Gaussian estimate by inverting
the moment generating function (or the Fourier transform if we pick λ, λ′ ∈ C).
We omit the proof for conciseness and we refer to [2] where this is done using a
general version of the Berry–Esseen theorem.

Proposition 4 (see Propositions 2.9, 2.10, 2.11 in [2]). For 0 < α1 <
α2 ≤ 1 and 0 < γ < 1, we have for h ∈ [0, 1],

P(Xh(α1, α2) > γ log log T ) � 1√
log log T

exp
(

−γ2 log log T

(α2 − α1)

)

= (log T )
−γ2

α2−α1
+o(1).

Moreover, if |h − h′| > (log T )−α1 , then

P(Xh(α1, α2) > γ log log T,Xh′(α1, α2) > γ log log T )

= (1 + o(1))P(Xh(α1, α2) > γ log log T )2.

Since the process (Xh, h ∈ [0, 1]) is continuous and not discrete, we need a
last estimate to control all values in an interval of length corresponding to the
relevant scale. This is needed when proving rough bound on the maximum in
Lemma 4. Heuristically, it says that the maximum of Xh(α1, α2) over an interval
of width smaller than (log T )−α2 behaves like a single value Xh(α1, α2). This is
done in [2] by a chaining argument and we omit the proof for conciseness.
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Lemma 2 (Corollary 2.6 in [2]). Let 0 ≤ α1 < α2 ≤ 1. For every h ∈ [0, 1]
and γ > 0, we have

P

(
max

|h−h′|≤(log T )−α2
Xh′(α1, α2) > γ log log T

)
� (log T )− γ2

α2−α1 .

In particular, we have

P

(
max

|h−h′|≤(log T )−1
X̃h′ > γ log log T

)
� (log T )− γ2

α(1+u)2+(1−α) .

3 Proof of Proposition 1

As mentioned in Sect. 1.3, the proof of Proposition 1 is based on an approximate
Gaussian integration by parts as in [9,16]. The following lemma is an adaptation
for complex random variables of Lemma 4 in [16] .

Lemma 3. Let ξ be a complex random variable such that E[|ξ|3] < ∞, and
E[ξ2] = E[ξ] = 0. Let F : C → C be a twice continuously differentiable function
such that for some M > 0,

∥∥∂2
zF
∥∥

∞ ,
∥∥∂2

zF
∥∥

∞ < M ,

where ‖f‖∞ = supz∈C
|f(z, z)|. Then

∣∣∣E
[
ξF (ξ, ξ)

]− E[|ξ|2] E [∂zF (ξ, ξ)
]∣∣∣� M E[|ξ|3].

Proof. Since E[ξ2] = E[ξ] = 0, the left-hand side can be written as

E
[
ξ
(
F (ξ, ξ) − F (0, 0) − ξ∂zF (0, 0) − ξ∂zF (0, 0)

)]

− E[|ξ|2] E
[(

∂zF (ξ, ξ) − ∂zF (0, 0)
)]

. (22)

By Taylor’s theorem in several variables and the assumptions, the following
estimates hold

∣∣F (ξ, ξ) − F (0, 0) − ξ∂zF (0, 0) − ξ∂zF (0, 0)
∣∣� M |ξ|2

∣∣∂zF (ξ, ξ) − ∂zF (0, 0)
∣∣� M |ξ|.

Therefore the norm of (22) gives
∣∣∣E
[
ξF (ξ, ξ)

]− E[|ξ|2] E [∂zF (ξ, ξ)
]∣∣∣� M(E[|ξ|3] + E[|ξ|2]E[|ξ|]).

The claim then follows by Hölder’s inequality.

As in [16], the lemma can be applied to relate the derivative of the free energy
to the two-point correlations of the process.
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Proposition 5. For any p ≤ T , we have

∂

∂u
E

[
log
∫ 1

0

exp
(
β(Xh(T ) + u Re(Upp

−ih−1/2)
)
dh

] ∣∣∣
u=0

=
β

2
E

[∫

[0,1]2

1 − cos(|h − h′| log p)
p

dG×2
β,T (h, h′)

]
+ O(p−3/2).

Proof. Write for short ωp(h) = (2p1/2)−1p−ih. Direct differentiation yields at
u = 0 ∫ 1

0

Upωp(h) dGβ,T (h) +
∫ 1

0

Upωp(h) dGβ,T (h). (23)

We make the dependence on Up in the measure Gβ,T explicit. For this, define

Yp(h) = β
∑

q≤T
p
=q

Re
(

Uqq
−ih

q1/2

)
.

Clearly, Yp(h) is independent of Up by definition. Consider

Fp(z, z) =

∫ 1

0
ωp(h) exp(βωp(h)z + βωp(h)z + Yp(h)) dh
∫ 1

0
exp(βωp(h′)z + βωp(h′)z + Yp(h′)) dh′

.

Note that with this definition, the first integral in (23) is UpFp(Up, Up) and the
second is its complex conjugate. This shows that the derivative of the expectation
at u = 0 is

E
[
Up · Fp(Up, Up) + Up · Fp(Up, Up)

]
.

It remains to apply Lemma 3 with the function Fp(z, z) and ξ = Up. Write for
short for a function H on [0, 1]

〈H〉(z,z) =

∫ 1

0
H(h) eβ(z ωp(h)+z ωp(h))+Yp(h)dh
∫ 1

0
eβ(z ωp(h)+z ωp(h))+Yp(h)dh

.

Direct differentiation of the above yields

∂z 〈H〉(z,z) = β
(
〈Hωp〉(z,z) − 〈H〉(z,z) 〈ωp〉(z,z)

)
. (24)

In particular, for H = ωp, we get

∂zFp(z, z) = β
(〈|ωp|2

〉(z,z) − | 〈ωp〉(z,z) |2
)

. (25)

When evaluated at z = Up, this is by definition of ωp

∂zFp(Up, Up) =
β

4

∫

[0,1]2
(p−1 − p−1 cos(|h − h′| log p)) dG×2

β,T (h, h′). (26)

Clearly, |ωp| ≤ p−1/2. Therefore the second derivatives are easily checked to be
bounded by O(p−3/2) by applying the formula (24) to each term of (25). The
statement of the lemma then follows from Lemma 3 and (26), after noticing that
the second term of (23) is the conjugate of the first.
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The proof of Proposition 1 is an application of Proposition 5 to a range of
primes.

Proof of Proposition 1. Recall the definition of ρ(h, h′) in Eqs. (5) and (8). On
one hand, Fubini’s theorem directly implies that

∫ α

0

G×2
β,T

{
(h, h′) : ρ(h, h′) ≤ y

}
dy

=
∫

[0,1]2

(∫ α

0

1{ρ(h,h′)≤r} dr

)
dGβ,T (h, h′)

=
∫

[0,1]2
(α − ρ(h, h′))1{ρ(h,h′)≤α}dGβ,T (h, h′). (27)

It remains to check on the other hand that the derivative in the proposition is
close to the expectation of the above. Direct differentiation of (11) at u = 0
yields by Proposition 5

∂FT

∂u
(β;α, 0) =

β2

2

∫

[0,1]2

∑

log p≤(log T )α

E
[
p−1(1 − cos(|h − h′| log p))dG×2

β,T (h, h′)
]

+ O

⎛

⎝
∑

p≤e(log T )α

p−3/2

⎞

⎠ . (28)

The error term is of order one by (6). Similarly, if |h − h′| ≤ (log T )−α, the sum
in the integral is by (16)

∑

log p≤(log T )α

p−1(1− cos(|h−h′| log p)) = α log log T −α log log T +O(1) = O(1).

On the other hand, if |h − h′| > (log T )−α, the sum can be divided into three
parts

∑

log p≤(log T )α

p−1 −
∑

log p≤|h−h′|−1

p−1 cos(|h − h′| log p)

−
∑

|h−h′|−1<log p≤(log T )α

p−1 cos(|h − h′| log p).

When Eq. (16) is applied to each of the parts, this equals

α log log T − log |h − h′|−1 + O(1).

Furthermore, recall from (8) that ρ(h, h′) log log T differs from log |h − h′|−1 by
o(log log T ). This implies that the conditions on log |h − h′|−1 can be replaced
by ρ(h, h′) log log T at a cost of a term o(log log T ) (since the sum would differ
by a range of log p of at most o(log T ) primes). All these observations together
imply
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1
log log T

∑

log p≤(log T )α

p−1(1− cos(|h − h′| log p))

=
(

α − log |h − h′|−1

log log T

)
1{ρ(h,h′)≤α} + o(1).

We finally conclude by putting the right side back in the integral of (28) and by
using (8) that

2
β2 log log T

∂FT

∂u
(β;α, 0)

=
∫

[0,1]2
(α − ρ(h, h′))E

[
1{ρ(h,h′)≤α}dG×2

β,T (h, h′)
]
+ o(1).

This matches the first claim (27) by an error o(1) thereby proving the
proposition.

4 Proof of Proposition 2

We write X̃h = (1 + u)Xh(α) + Xh(α, 1) as in Eq. (17). The limit of the free
energy of this process is obtained by Laplace’s method once the measure of
high points is known, cf. Lemma 5. The proof of Lemma 5 is based on a similar
computation of [6] for the two-dimensional Gaussian free field based on Kistler’s
multiscale second moment method [25]. But first, we need an a priori restriction
on the maximum of the process (X̃h). The maximum depends on the value of
the parameter u as expected from GREM models. With this in mind, we define

γ� =

⎧
⎨

⎩

(
(1 + u)2α + (1 − α)

)1/2

if u ≤ 0,

(1 + u)α + (1 − α) if u > 0.
(29)

Note that the two expressions are equal to 1 at u = 0 and that γ� > 1 if u > 0,
and γ� < 1 if u < 0. The next lemma bounds the maximum of X̃h.

Lemma 4. For any ε > 0,

lim
T→∞

P

(
max

h∈[0,1]
X̃h > (1 + ε)γ� log log T

)
= 0.

Proof. This is a consequence of Lemma 2 which shows that the large values of
Xh(α) are well approximated by points at a distance (log T )−α. In the case
u ≤ 0, we use the lemma with α = 1. Without loss of generality, suppose that
log T is an integer and consider Ik, k ≤ log T , a collection of intervals of length
(log T )−1 that partitions [0, 1]. Then a simple union bound yields

P

(
max

h∈[0,1]
X̃h > (1 + ε)γ� log log T

)
≤

log T∑

k=1

P

(
max
h∈Ik

X̃h > (1 + ε)γ� log log T

)
.
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Lemma 2 applied to X̃h then implies

P

(
max

h∈[0,1]
X̃h > (1 + ε)γ� log log T

)

� (log T ) exp

⎛

⎝−
(1 + ε)2

(
(1 + u)2α + (1 − α)

)
log log T )

(1 + u)2α + (1 − α)

⎞

⎠

≤ (log T )1−(1+ε)2 ,

which goes to 0 as claimed.
In the case u > 0, an extra restriction is needed since the large values of

Xh(α) are themselves limited. Proceeding as above, without loss of generality,
assume that (log T )α, (log T )1−α and log T are integers. Consider the collec-
tion of intervals Jj , j ≤ (log T )α, that partitions [0, 1] into intervals of length
(log T )−α. Each Jj is again partitioned into intervals Ijk, k ≤ (log T )1−α, of
length (log T )−(1−α). Then Lemma 2 implies

P

(
∃j : max

h∈Jj

Xh(α) > (1 + ε) · α log log T

)
→ 0. (30)

Therefore, the probability of the maximum of X̃h can be restricted as follows:

P

(
max

h∈[0,1]
X̃h > (1 + ε)γ� log log T

)

= P

(
∃h ∈ [0, 1] : X̃h > (1 + ε)γ� log log T,Xh(α) ≤ (1 + ε) · α log log T

)

+ o(1)

�
∑

j,k

(1+ε)·α log log T∑

q=0

P

(
max
h∈Jj

Xh(α) ∈ [q, q + 1],

max
h∈Ijk

Xh(α, 1) > (1 + ε)γ� log log T − (1 + u)(q + 1)
)

.

The last inequality is obtained by a union bound on the partition (Ijk) and by
splitting the values of the maximum of Xh(α) on the range [0, (1+ε)α log log T ].
(Note that Xh(α) is symmetric thus the maximum is greater than 0 with large
probability.) By independence between (Xh(α), h ∈ [0, 1]) and (Xh(α, 1), h ∈
[0, 1]), Lemma 2 can be applied twice to get the following bound on the summand:

� exp
( −q2

α log log T

)
· exp

⎛

⎜⎝
−
(
(1 + ε)γ� log log T − (1 + u)(q + 1)

)2

(1 − α) log log T

⎞

⎟⎠ . (31)

On the interval [0, (1+ε)α log log T ], this is maximized at the endpoint q = (1+ε)
α log log T . (This is where the case u < 0 differs, as the optimal q there is within
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the interval. See Remark 1 for more on this.) Putting this back in (31) and
summing over j, k, and q finally give the estimate:

P

(
max

h∈[0,1]
X̃h > (1 + ε)γ� log log T

)

� (log log T ) · (log T )α · e

−

(
(1+ε)α log log T

)2

α log log T · (log T )1−α · e

−

(
(1+ε)(1−α) log log T

)2

(1−α) log log T

� (log log T ) · log T 1−(1+ε)2 = o(1).

This concludes the proof of the lemma.

Consider for 0 < α ≤ 1 and |u| < 1, the (normalized) log-measure of γ-high
points

Eα,u(γ;T ) =
1

log log T
log Leb{h ∈ [0, 1] : X̃h > γ log log T} , 0 < γ < γ�. (32)

The limit of these quantities in probability can be computed following [6].

Lemma 5. The limit Eα,u(γ) = limT→∞ Eα,u(γ;T ) exists in probability. We
have for u < 0,

Eα,u(γ) = − γ2

(1 + u)2α + (1 − α)
,

and for u ≥ 0,

Eα,u(γ) =

{
− γ2

(1+u)2α+(1−α) if γ < γc

−α − (γ−(1+u)α)2

(1−α) if γ ≥ γc.
for γc =

(1 + u)2α + (1 − α)
(1 + u)

.

Remark 1. The dichotomy in the log-measure is due to the fact that for h with
values beyond γc log log T , the intermediate values Xh(α) is restricted by the
maximal level α log log T . More precisely, consider

MT = Leb{h ∈ [0, 1] : X̃h > γ log log T}
M′

T = Leb{h ∈ [0, 1] : (1 + u)Xh(α) ≥ λ log log T}
M′′

T = Leb{h ∈ [0, 1] : (1 + u)Xh(α) ≥ λ log log T,Xh(α, 1) ≥ (γ − λ) log log T}.
(33)

Clearly, we must have M′′
T ≤ MT . It turns out that M′′

T and MT are comparable
for an optimal choice of λ given by, when u < 0,

λ� =
γ(1 + u)2α

(1 + u)2α + 1 − α
, γ < γ�, (34)

and when u > 0,

λ� =

{
γ(1+u)2α

(1+u)2α+1−α if 0 < γ < γc ,

(1 + u)α if γc ≤ γ < γ�.
(35)
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One can see this at a heuristic level by considering first moments. Since the
maximum of Xh is well approximated by the maximum over lattice points spaced
(log T )−1 apart, there should be γ-high points only if

(log T ) · M′′
T ≥ 1. (36)

Moreover, we have that if M′
T = 0, then M′′

T = 0. And the maximum of Xh(α)
is well approximated by the maximum over lattice points spaced (log T )−α apart,
so there should be γ-high points only if

(log T )α · M′
T ≥ 1. (37)

Since Xh(α) and Xh(α, 1) are approximately Gaussian with variance 1
2α log log T

and 1
2 (1 − α) log log T , the following should hold approximately

logE[(log T )α · M′
T ]

log log T
= α − λ2

(1 + u)2α
+ o(1)

logE[(log T ) · M′′
T ]

log log T
= 1 − λ2

(1 + u)2α
− (γ − λ)2

1 − α
+ o(1)

Together with conditions (36) and (37), we obtain constraints on the value of λ:

α − λ2

(1 + u)2α
≥ 0 , (38)

1 − λ2

(1 + u)2α
− (γ − λ)2

1 − α
≥ 0. (39)

By maximizing M′′
T , under the constraints (38) and (39), one gets the values

(34) and (35) for λ.

With Remark 1 in mind, we are ready to bound the log-measure.

Proof of Lemma 5. Upper bound on the log-measure. For 0 < γ < γ�, consider
MT as in (33). We need to show that for ε > 0

lim
T→∞

P

(
MT > (log T )Eα,u(γ)+ε

)
= 0. (40)

We first prove the easiest cases where u ≥ 0 and γ < γc, as well as u ≤ 0. Let
ε > 0. And write V = 1 − α + (1 + u)2α for short. Observe that by Markov’s
inequality and Fubini’s theorem

P(MT > (log T )− γ2

V +ε) ≤ (log T )
γ2

V −ε

∫ 1

0

P(X̃h > γ log log T ) dh

= (log T )
γ2

V −ε
P(X̃h > γ log log T ) ,

(41)

where we used the fact that the variables X̃h, h ∈ [0, 1], are identically dis-
tributed. Since P(X̃h > γ log log T ) � exp(−γ2 log log T/V ) by Eq. (20), the
claim (40) follows.
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The case u > 0, γ > γc is more delicate as we need to control the values at
scale α. For ε′ > 0 to be fixed later, note that the same argument as for Eq. (30)
gives

P (Leb{h ∈ [0, 1] : Xh(α) > (α + ε′) log log T} > 0)
≤ P (∃h ∈ [0, 1] : Xh(α) > (α + ε′) log log T ) → 0.

(42)

The same hold by symmetry for −Xh(α). This implies

P

(
MT > (log T )Eα,u(γ)+ε

)

= P

(
Leb{h : X̃h > γ log log T, |Xh(α)| ≤ (α + ε′) log log T} > (log T )Eα,u(γ)+ε

)

+ o(1).

It remains to prove that the first term is o(1). As in the proof of Lemma4, we con-
sider the partition of [0, 1] by intervals Jj , j ≤ (log T )α, and the sub-partition Ijk,
k ≤ (log T )1−α. We also divide the interval [−(α+ ε′) log log T, (α+ ε′) log log T ]
into intervals [q, q + 1]. Then by Markov’s inequality and the additivity of the
Lebesgue measure

P

(
Leb{h : X̃h > γ log log T, |Xh(α)| ≤ (α + ε′) log log T} > (log T )Eα,u(γ)+ε

)

≤ (log T )−Eα,u(γ)−ε
∑

j,k

∑

|q|≤(α+ε′) log log T

E

[
Leb{h ∈ Ijk : X̃h > γ log log T,Xh(α) ∈ [q, q + 1]}

]

≤ (log T )−Eα,u(γ)−ε
∑

j,k

∑

|q|≤(α+ε′) log log T

(log T )−1
P (Xh(α, 1) > γ log log T − (1 + u)(q + 1),Xh(α) ≥ q) . (43)

The last line follows from Fubini’s theorem and the fact that

Leb(Ijk) = (log T )−1.

The probabilities can be bounded by the Gaussian bound (19)

P (Xh(α, 1) > γ log log T − (1 + u)(q + 1),Xh(α) ≥ q})

� exp
( −q2

α log log T

)
· exp

⎛

⎜⎝
−
(
γ log log T − (1 + u)(q + 1)

)2

(1 − α) log log T

⎞

⎟⎠ .

It is easily checked that the expression is maximized at q > (α + ε′) log log T for
ε′. Moreover, at the optimal q = (α + ε′) log log T in the considered range, the
probability equals (1 + o(1))(log T )Eα,u(γ). Using this observation to bound the
probability for each q in (43), we get

P

(
Leb{h : X̃h > γ log log T, |Xh(α)| ≤ (α + ε′) log log T} > (log T )Eα,u(γ)+ε

)

� (log T )−ε log log T = o(1).
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This finishes the proof of the upper bound.
Lower bound on the log-measure. For ε > 0, the goal is to show

P

(
MT > (log T )Eα,u(γ)−ε

)
→ 1 as T → ∞. (44)

This is done using the Paley–Zygmund inequality, which states that for a random
variable M ≥ 0 and 0 ≤ ηT ≤ 1,

P (M > ηT E [M]) ≥ (1 − ηT )2
E [M]2

E [M2]
. (45)

We will have ηT → 0, so the main task will be to demonstrate

E
[M2

]
= (1 + o (1))E [M]2 . (46)

This cannot be achieved when M = MT because of the correlations in Xh. To
overcome this problem, we define a modified version of MT by coarse graining
the field as described in [25].

For K ∈ N (that will depend eventually on ε), assume without loss of gen-
erality that {0, 1

K , 2
K , . . . , K−1

K , 1} is a partition of [0, 1] that is a refinement of
{0, α, 1}. Consider λ < λ� as defined in (34) and (35), and δ > 0 (that will
depend on ε). Define the events for the K-level coarse increments:

Jh(m) =

⎧
⎨

⎩

{
(1 + u)Xh

(
m−1

K , m
K

) ≥ (1 + δ)λ log log T
αK

}
if m = 1, . . . , αK,{

Xh

(
m−1

K , m
K

) ≥ (1 + δ) (γ−λ) log log T
(1−α)K

}
if m = αK + 1, . . . , K.

(47)
Moreover, define the sets

A = {h : Jh(m) occurs ∀m = 2, . . . , K},

B =
{

h : (1 + u)Xh

(
1
K

)
≤ −δ

2
log log T

}
. (48)

Note that if h ∈ A, by adding up the inequalities in Jh(m), we have for K large
enough,

X̃h − (1 + u)Xh

(
1
K

)
≥ (1 + δ)

(
γ − λ

αK

)
log log T

≥
(

γ +
δ

2

)
log log T.

Therefore this implies the inclusion

A ⊂
{

h ∈ [0, 1] : X̃h ≥ γ log log T
}

∪ B,
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so that MT ≥ Leb(A)−Leb(B). Equation (19) and Fubini’s theorem shows that

E[Leb(B)] � (log T )− δ2K
4(1+u)2 . For K large enough, Markov’s inequality then

implies

P

(
Leb

{
h ∈ [0, 1] : (1 + u)Xh

(
1
K

)
≤ −δ

2
log log T

}
≤ (log T )Eα,u(γ)−ε

)
→ 1.

The proof of (44) is then reduced to show

P(Leb(A) > 2(log T )Eα,u(γ)−ε) = P(Leb(A) > ηTE[Leb(A)]) → 1, (49)

where ηT is defined by 2(log T )Eα,u(γ)−ε = ηTE[Leb(A)].
Following (45), we first show ηT → 0. By (48), Fubini’s theorem, and inde-

pendence,

E[Leb(A)] =
∫ 1

0

K∏

m=2

P (Jh(m)) dh =
K∏

m=2

P (Jh(m)) , (50)

since the Xh’s are identically distributed. By Proposition 4,

P(Jh(m)) �
⎧
⎨

⎩
(log T )− (1+δ)2λ2

α2K(1+u)2
+o(1) when m = 1, . . . , αK,

(log T )− (1+δ)2(γ−λ)2

(1−α)2K
+o(1) when m = αK + 1, . . . ,K.

(51)

Thus, by (50) and (51), we have

E[Leb(A)] � (log T )− (1+δ)2λ2

α(1+u)2
− (1+δ)2(γ−λ)2

(1−α) (log T )
(1+δ)2λ2

α2K(1+u)2
+o(1)

. (52)

We can take λ close enough to λ�, δ small enough, and K large enough so that

E[Leb(A)] � (log T )− λ�2

α(1+u)2
− (γ−λ�)2

(1−α) − ε
2 = (log T )Eα,u(γ)− ε

2 ,

where we replace the value of λ� of (34) and (35). This shows that ηT → 0.
Observe that, we also have the reverse inequality

E[Leb(A)] � (log T )Eα,u(γ)+ ε
2 , (53)

using (19) instead of Proposition 4.
It remains to show (46). By independence of increments and Fubini’s theorem,

we have

E[Leb(A)2] =
∫ 1

0

∫ 1

0

K∏

m=2

P(Jh(m) ∩ Jh′(m)) dhdh′. (54)

We split the integral into four integrals: I for |h − h′| > (log T )
−1
2K , II for

(log T )
−1
K ≤ |h − h′| ≤ (log T )

−1
2K , III for (log T )

−r
K < |h − h′| ≤ (log T )

−(r−1)
K ,

r = 2, . . . K, and IV for |h − h′| ≤ (log T )−1. We will show that

I = E [Leb(A)]2 (1 + o(1))

and the others o(E[Leb(A)]2).
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– For II, note that Leb×2{(h, h′) : (log T )
−1
K ≤ |h − h′| ≤ (log T )

−1
2K } �

(log T )
−1
2K . Moreover, by (21) and Proposition 4, we have

P(Jh(m) ∩ Jh′(m)) � P(Jh(m))2.

This implies II = o(E[Leb(A)]2).
– For IV, note that clearly P(Jh(m) ∩ Jh′(m)) ≤ P(Jh(m)). Thus, IV �

(log T )−1
E[Leb(A)]. Using (53) and the fact that 1 + Eα,u(γ) > 0 for γ < γ�,

one gets IV = o(E[Leb(A)]2).
– For I, note that Leb×2{(h, h′) : |h − h′| > (log T )

−1
2K } = 1 + o(1). Moreover,

by Proposition 4, P(Jh(m) ∩ Jh′(m)) = (1 + o(1))P(Jh(m))2. This implies
I = (1 + o(1))E[Leb(A)]2).

– For III, the integral is a sum over r = 2, . . . , K of integrals of pairs with

(log T )
−r
K < |h − h′| ≤ (log T )

−(r−1)
K .

The measure of this set is � (log T )
−(r−1)

K . For fix r, the integrand is

K∏

m=2

P(Jh(m) ∩ Jh′(m)) ≤
r∏

m=2

P(Jh(m))
K∏

m=r+1

P(Jh(m) ∩ Jh′(m))

�
r∏

m=2

P(Jh(m))
K∏

m=r+1

P(Jh(m))2 ,

where the last line follows by (21) and Proposition 4. Putting all this together
and factoring the square of the one-point probabilities, one gets

III � E[Leb(A)]2
K∑

r=2

(log T )
−(r−1)

K

r∏

m=2

(
P(Jh(m))

)−1

.

We show
∏r

m=2

(
P(Jh(m))

)−1

< (log T )
(r−1)

K uniformly in T . This finishes
the proof since the sum is then the tail of a convergent geometric series. In
the case u < 0, since λ < λ�, and (1 + δ)γ < γ� for δ small, we have by (51),

P(Jh(m))−1 �
⎧
⎨

⎩
(log T )

λ�2

α2K(1+u)2 if m ≤ αK

(log T )
(γ�−λ�)2

(1−α)2K if m = αK + 1, . . . , K.

By the definition of λ� and γ� = V 1/2, this implies

r∏

m=2

(
P(Jh(m))

)−1

�
⎧
⎨

⎩
(log T )

(1+u)2

V
r−1
K if r ≤ αK

(log T )
(α−1/K)(1+u)2

V + 1
V

r−αK
K if r = αK + 1, . . . ,K.

Since u < 0, it is straightforward to check that the exponent is smaller than
r−1
K as claimed. The case u ≥ 0 is done similarly by splitting into two cases

γc ≤ γ < γ� and 0 < γ < γc. We omit the proof for conciseness.
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We now have all the results to finish the proof of Proposition 2 using Laplace’s
method.

Proof of Proposition 2. We first prove the limit in probability. The convergence
in L1, and in particular the convergence of the expectation, will be a consequence
of Lemma 6 below. For fixed ε > 0 and M ∈ N, consider

γj =
j(1 + ε)

M
γ� 0 ≤ j ≤ M,

and the event

A =
M⋂

j=1

{
(log T )Eα,u(γj)−ε ≤ Leb{h : X̃h > γj log log T} ≤ (log T )Eα,u(γj)+ε

}

⋂{
Leb{h : X̃h > γM log log T} = 0

}
. (55)

By Lemmas 4 and 5, we have that P(Ac) → 0 as T → ∞. It remains to prove
that the free energy is close to the claimed expression on the event A. On one
hand, the following upper bound holds on A:

∫ 1

0

exp βX̃h dh ≤
M∑

j=1

∫ 1

0

exp βX̃h 1{(log T )γj−1<e
˜Xh≤(log T )γj } dh

+
∫ 1

0

expβX̃h 1{e
˜Xh≤1} dh

≤
M∑

j=1

(log T )βγj+Eα,u(γj−1)+ε + 1.

On the other hand, we have the lower bound
∫ 1

0

exp βX̃h dh ≥
M∑

j=1

∫ 1

0

exp βX̃h 1{(log T )γj−1<e
˜Xh≤(log T )γj } dh

≥
M∑

j=1

(log T )βγj−1+Eα,u(γj)−ε.

Altogether, this implies

max
1≤j≤M

{βγj−1 + Eα,u(γj) − ε} ≤ log
∫ 1

0
expβX̃h dh

log log T

≤ max
1≤j≤M

{βγj + Eα,u(γj−1) + ε} + o(1).

In particular, by continuity of Eα,u(γ), we can pick M large enough depending
on ε and T large enough so that

∣∣∣∣∣
log
∫ 1

0
expβX̃h dh

log log T
− max

γ∈[0,γ�]
{βγ + Eα,u(γ)}

∣∣∣∣∣ ≤ 2ε.
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As mentioned above, since P(Ac) → 0 as T → ∞, this proves the convergence
in probability

lim
T→∞

log
∫ 1

0
exp βX̃h dh

log log T
= max

γ∈[0,γ�]
{βγ + Eα,u(γ)} .

It remains to check that the right side has the desired form. Let V = (1+u)2α+
(1 − α). If u < 0, the optimal γ is βV/2 whenever βV/2 < γ�, i.e., β < 2/V 1/2.
If β ≥ 2/V 1/2, then the optimal γ is simply γ�. Therefore, we have

max
γ∈[0,γ�]

{βγ + Eα,u(γ)} =

{
β2V

4 if β < 2/V 1/2

βV 1/2 − 1 if β ≥ 2/V 1/2.

If u ≥ 0, the optimal γ is βV/2 if γ < γc, i.e., β < 2/(1 + u). If γ > γc, then
the optimal γ is (1 + u)α + β(1−α)

2 until it equals γ�. This happens at β ≥ 2.
Putting all this together, we obtain that

max
γ∈[0,γ�]

{βγ + Eα,u(γ)} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β2
(
(1+u)2α+(1−α)

)

4 if β < 2
(1+u)

β(1 + u)α − α + β2(1−α)
4 if 2

(1+u) ≤ β < 2

β
(
(1 + u)α + (1 − α)

)
− 1 if β ≥ 2.

This corresponds to the expression in Proposition 2 expressed in terms of (12).

Lemma 6. The sequence of random variables

( 1
log log T

log
∫ 1

0

exp
(
β(Xh + uXh(α)

)
dh
)

T>1

is uniformly integrable. In particular, the convergence in probability of the
sequence is equivalent to the convergence in L1.

Proof. Write for short

fT = (log log T )−1 log
∫ 1

0

expβX̃h dh.

We need to show that for any ε > 0, there exists C large enough so that uniformly
in T ,

E[|fT |1{|fT )|>C}] < ε.

It is easy to check that

E[|fT |1{|fT |>C}] =
∫ ∞

C

P(fT > y)dy + CP(fT > C)

+
∫ −C

−∞
P(fT < y) dy + CP(fT < −C). (56)
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Therefore, it remains to get a good control on the right and left tail of fT . For
the right tail, observe that by Markov’s inequality

P(fT > y) = P

(∫
exp βX̃h dh > (log T )y

)
≤ (log T )−y

E

[∫
exp βX̃h dh

]
.

Using Proposition 3 and Fubini’s theorem, we get

P(fT > y) � (log T )((1+u)2α+(1−α)) β2

4 −y.

This implies

∫ ∞

C

P(fT > y) dy + CP(fT > C) � (log T )((1+u)2α+(1−α)) β2

4 −C

log log T

+ C(log T )((1+u)2α+(1−α)) β2

4 −C .

It suffices to take C > ((1 + u)2α + (1 − α))β2

4 for this to be uniformly small in
T . The left tail is bounded the same way after noticing that by Markov’s and
Jensen’s inequalities,

P(fT < −y) = P

(∫
expβX̃h dh < (log T )−y

)

≤ (log T )−y
E

[(∫
exp βX̃h dh

)−1
]

≤ (log T )−y
E

[∫
exp −βX̃h dh

]

� (log T )((1+u)2α+(1−α)) β2

4 −y.

These estimates imply that E[|fT |1{|fT )|>C}] can be made arbitrarily small in

(56) by taking C larger than ((1 + u)2α + (1 − α))β2

4 .
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Abstract. This paper studies homogenization of stochastic differential
systems. The standard example of this phenomenon is the small mass
limit of Hamiltonian systems. We consider this case first from the heuris-
tic point of view, stressing the role of detailed balance and presenting
the heuristics based on a multiscale expansion. This is used to propose
a physical interpretation of recent results by the authors, as well as to
motivate a new theorem proven here. Its main content is a sufficient
condition, expressed in terms of solvability of an associated partial dif-
ferential equation (“the cell problem”), under which the homogenization
limit of an SDE is calculated explicitly. The general theorem is applied
to a class of systems, satisfying a generalized detailed balance condition
with a position-dependent temperature.

Keywords: Homogenization · Stochastic differential equation ·
Hamiltonian system · Small mass limit · Noise-induced drift

1 Introduction and Background

This paper studies the small mass limit of a general class of Langevin equations.
Langevin dynamics is defined in terms of canonical variables—positions and
momenta—by adding damping and (Itô) noise terms to Hamiltonian equations.
In the limit when the mass, or masses, of the system’s particles, go to zero,
the momenta homogenize, and one obtains a limiting equation for the position
variables only. This is a great simplification which often allows one to see the
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nature of the dynamics more clearly. If the damping matrix of the original system
depends on its state, a noise-induced drift arises in the limit. We analyze and
interpret this term from several points of view. The paper consists of four parts.
The first part contains general background on stochastic differential equations.
In the second part, the small-mass limit of Langevin equations is studied using
a multiscale expansion. This method requires making additional assumptions,
but it leads to correct results in all cases in which rigorous proofs are known.
The third part presents a new rigorous result about homogenization of a general
class of singularly perturbed SDEs. The final part applies this result to prove a
theorem about the homogenization of a large class of Langevin systems.

1.1 Stochastic Differential Equations

Let us start from a general background on Langevin equations. The material
presented here is not new, and its various versions can be found in many text-
books, see for example [1]. We do not strive for complete precision or a listing of
all necessary assumptions in our discussions here. The aim of the first two sec-
tions is to motivate and facilitate reading the remainder of the paper. Detailed
technical considerations will be reserved for Sects. 3 and 4, where we present our
new results.

Consider the stochastic differential equation

dyt = b(yt) dt + σ(yt) dWt. (1)

The process yt takes values in R
m, b is a vector field in R

m, W is an n-dimensional
Wiener process and σ is an m×n-matrix-valued function. Define an m×m matrix
Σ by Σ = σσT . The Eq. (1) defines a Markov process with the infinitesimal
operator

(Lf)(y) =
1
2
Σij∂i∂jf + bi∂if

where we are writing ∂i for ∂yi
and suppressing the dependence of Σ, bi and f

on y from the notation. Summation over repeating indices is implied.
We assume that this process has a unique stationary probability measure

with a C2-density h(y). Under this assumption h satisfies the equation

L∗h = 0

where L∗ denotes the formal adjoint of L,

L∗f =
1
2
∂i∂j (Σijf) − ∂i (bif).

That is, we have

∂i

(
1
2
∂j (Σijh) − bih

)
= 0. (2)
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Consider the special case when h solves the equation

1
2
∂j (Σijh) − bih = 0. (3)

In this case the operator L is symmetric on the space L2 (Rm, h) ≡ L2
h of square-

integrable functions with the weight h, as the following calculation shows. Using
product formula, we have

∫
(Lf) gh =

∫
fL∗ (gh) =

∫
f∂i

(
1
2
∂j (Σijgh) − bigh

)
.

The expression in parentheses equals

1
2
∂jg (Σijh) + g

1
2
∂j (Σijh) − gbih =

1
2
∂jg (Σijh)

by (3). Applying product formula again, we obtain
∫

(Lf) gh =
∫

f

(
1
2
Σij (∂i∂jg) h +

1
2
∂i (Σijh) ∂jg

)

which, by another application of (3), equals
∫

f

(
1
2
Σij∂i∂jg − bj∂jg

)
h =

∫
f (Lg) h.

Here is a more complete discussion.

1.2 Detailed Balance Condition and Symmetry of the Infinitesimal
Operator

We have ∫
(Lf) gh =

∫ (
1
2
Σij∂i∂jf + bi∂if

)
gh

= −1
2

∫
∂if∂j (Σijgh) +

∫
(∂if) bigh

= −1
2

∫
∂if [∂j (Σijh) g + Σijh∂jg] + ∂ (∂if) bigh

=
∫

∂if

[
−1

2
∂j (Σijh) + bih

]
g − 1

2

∫
Σij∂if∂jgh.

Interchanging the roles of f and g and canceling the term symmetric in f and
g, we obtain

∫
(Lf) gh −

∫
f (Lg) h =

∫
[(∂if) g − (∂ig) f ]

(
−1

2
∂j (Σijh) + bih

)
.
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If h is a solution to the equation

−1
2
∂j (Σijh) + bih = 0

then the above expression is zero, showing that the operator L is symmetric
on the space L2

h. Conversely, for this symmetry to hold, the R
m-valued func-

tion − 1
2∂j (Σijh) + bih has to be orthogonal to all elements of the space L2 (of

functions with values in R
m) of the form (∂if) g − (∂ig) f . It is not hard to

prove that every C1 function with this property must vanish, and thus, that
1
2∂j (Σijh)−bih = 0. Here is a sketch of a proof: suppose φ is C1 and orthogonal
to all such functions. That is, for every f and g,

∫
[φi (∂if) g − φi (∂ig) f ] = 0.

Integrating the first term by parts we obtain
∫

[− (∂iφi) g − 2φi∂ig] f = 0.

Since this holds for all f , it follows that

− (∂iφi) g − 2φi∂ig = 0

and thus also ∫
[− (∂iφi) g − 2φi∂ig] = 0.

Integrating the second term by parts, we get
∫

(∂iφi) g = 0

and, since this is true for every g, it follows that ∂iφi vanishes. We thus have,
for every g

φi∂ig = 0

and this implies that φ vanishes. In summary:

Proposition: If the density h of the stationary probability measure is C2, then
h satisfies the stationary Fokker–Planck equation

∂i

[
−1

2
∂j (Σijh) + bih

]
= 0.

The stronger statement

−1
2
∂j (Σijh) + bih = 0

is equivalent to symmetry of the operator L on the space L2
h.
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We are now going to relate the above symmetry statement to the detailed
balance property of the stationary dynamics. First, it is clearly equivalent to the
analogous property for the backward Kolmogorov semigroup:∫

(Ptf) gh =
∫

f (Ptg) h

since Pt = exp (tL). Now, (Ptf) (x) is the expected value of f(xt) for the process,
starting at x at time 0. In particular, for f = δy, we obtain Ptf(x) = pt(x, y)—
the density of the transition probability from x to y in time t. Using the above
symmetry of Pt with f = δy and g = δx, we obtain the detailed balance condition:

h(x)pt(x, y) = h(y)pt(y, x)

which, conversely, implies the symmetry statement for arbitrary f and g.

1.3 The Case of a Linear Drift and Constant Noise

When both b(y) and σ(y) are constant or depend linearly on y, (1) can be solved
explicitly [2] and an explicit formula for its stationary distribution can be found,
when it exists. We consider the special case b(y) = −γy and σ(y) ≡ σ, where γ
and σ are constant matrices and the eigenvalues of γ have positive real parts.
The stationary Fokker–Planck equation, (2), reads

∇ ·
(

1
2
Σ∇h + (γy)h

)
= 0

where Σ = σσT . It has a Gaussian solution

h(y) = (2π)−m
2 (det M)− 1

2 exp
(

−1
2
(
M−1y, y

))

with the covariance matrix M which is the unique solution of the Lyapunov
equation

γM + MγT = Σ

and can be written as (see, for example, [3])

M =
∫ ∞

0

exp (−tγ) Σ exp
(−tγT

)
dt.

This result can be verified by a direct calculation. We emphasize that it holds
without assuming the detailed balance condition. The latter condition is satisfied
if and only if the above h solves the equation

1
2
Σ∇h + (γy)h = 0

which is equivalent to M = 1
2γ−1Σ or, in terms of the coefficients of the

system, to

ΣγT = γΣ (4)
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To see the physical significance of this condition, let us go back to the general
case and write (adapting the discussion in [4] to our notation)

γ =
1
2
ΣM−1 − iΩ.

Ω represents the “oscillatory degrees of freedom” of the diffusive system. The
above calculations show that the detailed balance condition is equivalent to
Ω = 0, in agreement with the physical intuition that there are no macroscopic
currents in the stationary state.

2 Small Mass Limit—A Perturbative Approach

We are now going to apply the general facts about Langevin equations to a model
of a mechanical system, interacting with a noisy environment. The dynamical
variables of this system are positions and momenta, and, in general, the Langevin
equations which describe its time evolution, are not linear. However, when inves-
tigating the small mass limit of the system by a perturbative method, we will
encounter equations closely related to those studied above. This will be explained
later, when we interpret the limiting equations.

Consider a mechanical system with the Hamiltonian H(q, p) where q, p ∈ R
n.

We want to study a small mass limit of this system, coupled to a damping force
and the noise. Therefore, we introduce the variable z = p√

m
and assume the

Hamiltonian can be written H(q, p) = H(q, z) where H is independent of m. We
thus have

dqt =
1√
m

∇zH(qt, zt) dt

dzt = − 1√
m

∇qH(qt, zt) dt − 1
m

γ(qt)∇zH(qt, zt) dt +
1√
m

σ(qt) dWt.

γ is n × n-matrix-valued, σ is n × k-matrix-valued and W is a k-dimensional
Wiener process. We emphasize that σ does not play here the same role that
it played in our discussion of the general Langevin equation, since the noise
term enters only the equation for dzt. The number k of the components of the
driving noise does not have to be related to the dimension of the system in any
particular way. The corresponding backward Kolmogorov equation for a function
ρ(q, z, t) is

∂tρ = Lρ

where the differential operator L equals

L =
1
m

L1 +
1√
m

L2

with

L1 =
1
2
Σ∇z · ∇z − γ∇zH∇z

L2 = ∇zH · ∇q − ∇qH · ∇z
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where Σ(q) = σ(q)σ(q)T . We represent the solution of the Kolmogorov equation
as a formal series

ρ = ρ0 +
√

mρ1 + mρ2 + . . .

Equating the expressions, proportional to m−1, m− 1
2 and m0, we obtain the

equations:

L1ρ0 = 0,

L1ρ1 = −L2ρ0,

∂tρ0 = L1ρ2 + L2ρ1.

To satisfy the first equation it is sufficient to choose ρ0 which does not depend
on z:

ρ0 = ρ0(q, t).

If we now search for ρ1 which is linear in z, the second equation simplifies to

γ∇zH · ∇zρ1 = ∇zH · ∇qρ0

which has a solution

ρ1(q, z) =
(
γ−1
)T ∇qρ0 · z = ∇qρ0 · γ−1z.

Writing the third equation as

∂tρ0 − L2ρ1 = L1ρ2

and applying the identity

RanL1 = (KerL∗
1)

⊥

to the space L2 with respect to the z variable, we see that ∂tρ0 − L2ρ1 = L1ρ2
must be orthogonal in this space to any function h in the null space of L∗

1. We
have

L∗
1h = ∇z ·

(
1
2
Σ∇zh + (γ∇zH) h

)

where Σ = σσT .
It is impossible to continue the analysis without further, simplifying assump-

tions. We are first going to study the case of a general H, assuming a form of
the detailed balance condition in the variable z, at fixed q.

Assumption 1. for every q there exists a nonnegative solution of the equation

1
2
Σ∇zh + (γ∇zH) h = 0 (5)

of finite L1(dz)-norm. We can thus choose∫
h(q, z) dz = 1.
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We will say in this case that the system satisfies the conditional detailed balance
property in the variable z. Since ρ0 does not depend on z, the orthogonality
condition can be written as

∂tρ0 =
∫

L2ρ1(q, z)h(q, z) dz.

We have the following explicit formula for L2ρ1 (summation over repeated indices
is implied):

L2ρ1 = ∂zi
H
(
∂qi∂qjρ0

) (
γ−1
)
jk

zk + ∂zi
H
(
∂qjρ0

)
∂qi

((
γ−1
)
jk

)
zk

− ∂qiH
(
∂qjρ0

) (
γ−1
)
ji

.

To integrate it against h(q, z), we will use the following consequence of (5)∫
(∂zi

H) zkh(q, z) dz = −1
2

∫ (
γ−1Σ∇zh

)
i
zk dz (6)

= −
∫ (

γ−1Σ
)
ij

(
∂zj

h
)
zk dz = −1

2
(
γ−1Σ

)
ij

∫ (
∂zj

h
)
zk dz

=
1
2
(
γ−1Σ

)
ij

∫
hδjk dz =

1
2
(
γ−1Σ

)
ik

.

The orthogonality condition is thus

∂tρ0 = − (γ−1
)
ji

〈∂qiH〉∂qjρ0 +
1
2
(
γ−1Σ

)
ik

∂qi

((
γ−1
)
jk

)
∂qjρ0

+
1
2
(
γ−1Σ

)
ik

(
γ−1
)
jk

(
∂qi∂qjρ0

)
.

In this formula, which is more general than the detailed-balance case of the
rigorous result of [5], 〈−〉 denotes the average (i.e. the integral over z with the
density h(q, z)). This notation is used only in the term in which the average
has not been calculated explicitly. Passing from the Kolmogorov equation to the
corresponding SDE, we obtain the effective Langevin equation in the m → 0
limit:

dqt = −γ(qt)−1 (〈∇qH〉(qt) + S(qt)) dt + γ−1(qt)σ(qt) dWt (7)

where the components of the noise-induced drift, S(q), are given by

Si(q) =
1
2
(
γ−1Σ

)
jk

∂qj

((
γ−1
)
ik

)

and we have used
γ−1σ

(
γ−1σ

)T
= γ−1Σ

(
γ−1
)T

.

We are now going to interpret the limiting Eq. (7), using the stationary proba-
bility measure h(q, z) dz, as follows: from the original equations for qt and zt we
obtain

dqt = −γ(qt)−1∇qH dt + γ(qt)−1σ(qt) dWt − √
mγ(qt)−1 dzt.
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Integrating the last term by parts, we obtain

√
m
(
γ−1(qt)

)
ij

dzj
t = d

(√
m
(
γ−1

ij (qt)
)
zj
t

)
− √

m d
((

γ−1
)
ij

)
zj
t .

We leave the first term out, since, under fairly general natural assumptions, it
is of order m

1
2 [5]. The second term equals

−∂qk

((
γ−1
)
ij

)
(∂zk

H) zj dt.

We substitute this into the equation for dqt and average, multiplying by h(q, z)
and integrating over z. The calculation is as in (6) and the result is thus the
same as the equation obtained by the multiscale expansion (7). This provides the
following heuristic physical interpretation of the perturbative result: the smaller
m is, the faster the variation of z becomes, and in the limit m → 0, z homogenizes
instantaneously, with q changing only infinitesimally.

Let us now discuss conditions, under which one may expect our conditional
detailed balance assumption to hold. As seen above, at fixed q this assumption
is equivalent to existence of a non-negative, integrable solution of the equation

1
2
Σ∇zh + γ (∇zH) h = 0. (8)

This equation can be rewritten as

∇zh

h
= −2Σ−1γ∇zH.

The left-hand side equals ∇z log h. Letting B = −2Σ−1γ to simplify notation,
we see that a necessary condition for existence of a solution is that B∇zH be a
gradient. This requires

∂zk

(
bij∂zj

H
)

= ∂zi

(
bkj∂zj

H
)

for all i, k, where bij are matrix elements of B. Introducing the matrix R = (rij)
of second derivatives of H,

rij = ∂zi
∂zj

H

we see that solvability of (8) is equivalent to symmetry of the product BR:

BR = RBT .

For the system to satisfy the conditional detailed balance property, this relation
has to be satisfied for all q and z. When H is a quadratic function of z, the matrix
R is constant. Even though in this case we will derive the limiting equation
without assuming conditional detailed balance, let us remark that the above
approach provides a method of determining when that condition holds, different
from that used earlier. Namely, let

H(q, z) = V (q) +
1
2
Q(q)z · z
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where Q(q) is a symmetric matrix. We then have R = Q and the solvability
condition becomes

BQ = QBT .

In a still more special—but the most frequently considered—case when Q is a
multiple of identity, this reduces to

B = BT

which is easily seen to be equivalent to the relation

γΣ = ΣγT .

We have derived this condition earlier by a different argument (4).
If γ is symmetric, this becomes the commutation relation

γΣ = Σγ.

Note that if γΣ = ΣγT , the solution of the Lyapunov equation

JγT + γJ = Σ

is given by J = 1
2γ−1Σ. In this the case the linear Langevin equation in the z

variable, whose conditional equilibrium at fixed value of q we are studying, has
no “oscillatory degrees of freedom”, as discussed earlier (see also [4]).

In the case when H is not a quadratic function of z, the matrix BR(q, z) has
to be symmetric for all q and z, which means satisfying a continuum of conditions
for every fixed q. It is interesting to ask whether there exist physically natural
examples in which this happens, without each B(q) being a multiple of identity.
We are not going to pursue this question here.

In the case when B(q) is a multiple of identity, we can write

A = 2β(q)−1γ

with β(q)−1 = kBT (q) and call the scalar function T (q) generalized temperature.
The limiting Kolmogorov equation reads then

∂tρ0 = − (γ−1
)
ji

〈∂qiH〉∂qjρ0 + kBT∂qk

(
γ−1
)
jk

∂qjρ0 + kBT
(
γ−1
)
ij

(
∂qi∂qjρ0

)

and the components of the noise-induced drift are thus

Sj(q) = kBT∂qk

(
γ−1
)
jk

.

The above applies in particular in the one-dimensional case, in which σ(q)2 and
γ(q) are scalars and hence one is always an (q-dependent) multiple of the other:

kBT (q) =
σ(q)2

2γ(q)
.
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The limiting Langevin equation is in this case

dqt = −〈∇qH〉
γ

dt − 1
2

∇qγ

γ3
σ2 dt +

σ

γ
dWt.

For a Hamiltonian equal to a sum of potential and quadratic kinetic energy,
H = V (q)+ z2

2 , the first term equals F
γ , where F = −∇qV dt, in agreement with

earlier results.
The second situation, in which the perturbative treatment of the original

system can be carried out explicitly is the general quadratic kinetic energy case.

Assumption 2. H = V (q) + z2

2

If we follow the singular perturbation method used above, we again need to
find the integral (6), where ∂zi

H = zi. In this case we know the solution of
L∗
1h = 0 explicitly:

h(q, z) = (2π)−n
2 (det M)− 1

2 exp
(

−1
2
M−1z · z

)

so the integral in (6) is the mean of zizk in the Gaussian distribution with the
covariance M = (mik), that is, mik. The second-order term in the Kolmogorov
equation is thus mik

(
γ−1
)
jk

∂qi∂qjρ0. The corresponding Langevin equation,
which has been derived rigorously in [5] is in this case

dqt = −γ−1(qt)∇qV (qt) dt + S(qt) dt + γ−1(qt)σ(qt) dWt.

The homogenization heuristics proposed under Assumption 1 applies here as
well: the limiting Langevin equation can be interpreted as a result of averaging
over the conditional stationary distribution of the z variable. A rigorous result,
corroborating this picture has recently been proven in [6].

3 A Rigorous Homogenization Theorem

We now develop a framework for the homogenization of Langevin equations
that is able to make many of the heuristic results from the previous two sections
rigorous. Our results will concern Hamiltonians of the form

H(t, x) = K(t, q, p − ψ(t, q)) + V (t, q) (9)

where x = (q, p) ∈ R
n × R

n, K = K(t, q, z) and V = V (t, q) are C2, R-valued
functions, K is non-negative, and ψ is a C2, Rn-valued function. The splitting
of H into K and V does not have to correspond physically to any notion of
kinetic and potential energy, although we will use those terms for convenience.
The splitting is not unique; it will be constrained further as we continue. We now
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define the family of scaled Hamiltonians, parameterized by ε > 0 (generalizing
the above mass parameter):

Hε(t, q, p) ≡ Kε(t, q, p) + V (t, q) ≡ K(t, q, (p − ψ(t, q))/
√

ε) + V (t, q).

Consider the following family of SDEs:

dqε
t = ∇pH

ε(t, xε
t)dt, (10)

dpε
t = (−γ(t, xε

t)∇pH
ε(t, xε

t) − ∇qH
ε(t, xε

t) + F (t, xε
t))dt + σ(t, xε

t)dWt, (11)

where γ : [0,∞) × R
2n → R

n×n and σ : [0,∞) × R
2n → R

n×k are continuous,
γ is positive definite, and Wt is a R

k-valued Brownian motion on a filtered
probability space (Ω,F ,Ft, P ) satisfying the usual conditions [7].

Our objective in this section is to develop a method for investigating the
behavior of xε

t in the limit ε → 0+; more precisely, we wish to prove the existence
of a limiting “position” process qt and derive a homogenized SDE that it satisfies.
In fact, the method we develop is applicable to a more general class SDEs that
share certain properties with (10)–(11). In the following subsection, we discuss
some prior results concerning (10)–(11). This will help motivate the assumptions
made in the development of our general homogenization method, starting in
Subsect. 3.2.

3.1 Summary of Prior Results

Let xε
t be a family of solutions to the SDE (10)–(11) with initial condition

xε
0 = (qε

0, p
ε
0). We assume that a solution exists for all t ≥ 0 (i.e. there are no

explosions). See Appendix B in [8] for assumptions that guarantee this. Under
Assumptions 1–3 in [8] (repeated as Assumptions A.1–A.3 in AppendixA, we
showed that for any T > 0, p > 0, 0 < β < p/2 we have

sup
t∈[0,T ]

E [‖pε
t − ψ(t, qε

t )‖p] = O(εp/2) and E

[
sup

t∈[0,T ]

‖pε
t − ψ(t, qε

t )‖p

]
= O(εβ)

(12)

as ε → 0+ i.e. the point (p, q) is attracted to the surface defined by p = ψ(t, q).
Adding Assumption 4 (Assumption (A.4) in the appendix) we also showed

that

d(qε
t )

i = (γ̃−1)ij(t, qε
t )(−∂tψj(t, qε

t ) − ∂qjV (t, qε
t ) + Fj(t, xε

t))dt (13)

+ (γ̃−1)ij(t, qε
t )σjρ(t, xε

t)dW ρ
t − (γ̃−1)ij(t, qε

t )∂qjK(t, qε
t , z

ε
t )dt

+ (zε
t )j∂ql(γ̃−1)ij(t, qε

t )∂zl
K(t, qε

t , z
ε
t )dt − d((γ̃−1)ij(t, qε

t )(u
ε
t)j)

+ (uε
t)j∂t(γ̃−1)ij(t, qε

t )dt,

where uε
t ≡ pε

t − ψ(t, qε
t ), zε

t ≡ uε
t/

√
ε, and

γ̃ik(t, q) ≡ γik(t, q) + ∂qkψi(t, q) − ∂qiψk(t, q). (14)
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We define the components of γ̃−1 such that

(γ̃−1)ij γ̃jk = δi
k,

and for any vi we define (γ̃−1v)i = (γ̃−1)ijvj .
Under the additional Assumptions 5–7 in [8], which include further restric-

tions on the form of the Hamiltonian, we were then able to show that qε
t converges

in an Lp-norm as ε → 0+ to the solution of a lower dimensional SDE,

dqt = γ̃−1(t, qt)(−∂tψ(t, qt) − ∇qV (t, qt) + F (t, qt, ψ(t, qt)))dt + S(t, qt)dt

+ γ̃−1(t, qt)σ(t, qt, ψ(t, qt))dWt. (15)

The noise-induced drift term, S(t, q), that arises in the limit is the term of
greatest interest here. Its form is given in Eq. (3.26) in [8].

The homogenization technique used in [8] to arrive at (15) relies heavily
on the specific structural assumptions on the form of the Hamiltonian. Those
assumptions cover a wide variety of important systems, such as a particle in an
electromagnetic field, and motion on a Riemannian manifold, but it is desirable
to search for a more generally applicable homogenization method. In this paper,
we develop a significantly more general technique, adapted from the methods
presented in [9], that is capable of homogenizing terms of the form G(t, qε

t , (p
ε
t −

ψ(t, qε
t ))/

√
ε)dt for a general class of SDEs that satisfy the property (12), as well

as prove convergence of qε
t to the solution of a limiting, homogenized SDE. In

particular, it will be capable of homogenizing qε
t from the Hamiltonian system

(10)–(11) under less restrictive assumptions on the form of the Hamiltonian, than
those made in [8]. We emphasize that the convergence statements are proven in
the strong sense, see Sect. 3.2.

3.2 General Homogenization Framework

Here we describe our homogenization technique in a more general context than
the Hamiltonian setting from the previous section. This method is related to the
cell problem method from [9], our proof applies to a larger class of SDEs and
demonstrates Lp-convergence rather that weak convergence.

We will denote an element of R
n × R

m by x = (q, p), where we no longer
require the q and p degrees of freedom to have the same dimensionality, though
we still employ the convention of writing q indices with superscripts and p indices
with subscripts. We let Wt be an R

k-valued Wiener process, ψ : [0,∞) × R
n →

R
m be C2 and G1, F1 : [0,∞)×R

n+m×R
m → R

n, G2, F2 : [0,∞)×R
n+m×R

m →
R

m, σ1 : [0,∞)×R
n+m → R

n×k, and σ2 : [0,∞)×R
n+m → R

m×k be continuous.
With these definitions, we consider the following family of SDEs, depending on
a parameter ε > 0:

dqε
t =

(
1√
ε
G1(t, xε

t, z
ε
t ) + F1(t, xε

t, z
ε
t )
)

dt + σ1(t, xε
t)dWt, (16)

dpε
t =

(
1√
ε
G2(t, xε

t, z
ε
t ) + F2(t, xε

t, z
ε
t )
)

dt + σ2(t, xε
t)dWt, (17)
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where we define zε
t = (pε

t − ψ(t, qε
t ))/

√
ε. We will assume, in analogy with (12),

that:

Assumption 3.1. For any T > 0, p > 0, 0 < β < p/2 we have

sup
t∈[0,T ]

E [‖pε
t − ψ(t, qε

t )‖p] = O(εp/2) and E

[
sup

t∈[0,T ]

‖pε
t − ψ(t, qε

t )‖p

]
= O(εβ)

as ε → 0+.

In words, we assume that the p degrees of freedom are attracted to the values
defined by p = ψ(t, q). This is an appropriate setting to expect some form of
homogenization, as it suggests that the dynamics in the limit ε → 0+ can be
characterized by fewer degrees of freedom—the q-variables.

Homogenization of Integral Processes. In this section we derive a method
capable of homogenizing processes of the form

M ε
t ≡

∫ t

0

G(s, xε
s, z

ε
s)ds (18)

in the limit ε → 0+. More specifically, our aim is to find conditions under which
there exists some function, S(t, q), such that

∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

S(s, qε
s)ds → 0 (19)

in some norm, as ε → 0+ , i.e. only the q-degrees of freedom are needed to charac-
terize M ε

t in the limit. We will call a family of processes, S(t, qε
t )dt, that satisfies

such a limit, a homogenization of G(t, xε
t, z

ε
t )dt. The technique we develop will

also be useful for proving existence of a limiting process qs (i.e. qε
s → qs), and

showing that
∫ t

0

G(s, xε
s, z

ε
s)ds →

∫ t

0

S(s, qs)ds.

as ε → 0+. We will consider this second question in Sect. 3.2. Here, our focus is
on (19).

As a starting point, let χ(t, x, z) : [0,∞) × R
n+m × R

m → R be C1,2, where
C1,2 is defined as follows:

– If σ1 �= 0 then we take this to mean χ is C1 and, for each t, χ(t, x, z) is C2

in (x, z) with second derivatives continuous jointly in all variables.
– If σ1 = 0 then we take this to mean χ is C1 and, for each t, q, χ(t, q, p, z) is

C2 in (p, z) with second derivatives continuous jointly in all variables.
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Eventually, we will need to carefully choose χ so that we achieve our aim,
but for now we simply use Itô’s formula to compute χ(t, xε

t, z
ε
t ). We defined C1,2

precisely so that Itô’s formula is justified. For this computation, we will define
χε(t, x) = χ(t, x, (p − ψ(t, q))/

√
ε), and

Σij
11 =

∑
ρ

(σ1)i
ρ(σ1)j

ρ, (Σ12)i
j =

∑
ρ

(σ1)i
ρ(σ2)jρ, (Σ22)ij =

∑
ρ

(σ2)iρ(σ2)jρ.

(20)

Itô’s formula gives

χ(t, xε
t, z

ε
t ) = χ(0, xε

0, z
ε
0) +

∫ t

0

∂sχ
ε(s, xε

s)ds

+
∫ t

0

∇qχ
ε(s, xε

s) · dqε
s +
∫ t

0

∇pχ
ε(s, xε

s) · dpε
s

+
1
2

∫ t

0

∂qi∂qjχε(s, xε
s)Σ

ij
11(s, x

ε
s)ds

+
1
2

∫ t

0

∂qi∂pj
χε(s, xε

s)(Σ12)i
j(s, x

ε
s)ds

+
1
2

∫ t

0

∂pi
∂qjχε(s, xε

s)(Σ12)
j
i (s, x

ε
s)ds

+
1
2

∫ t

0

∂pi
∂pj

χε(s, xε
s)(Σ22)ij(s, xε

s)ds.

Note that if σ1 = 0 then only the second derivatives that we have assumed exist
are involved in this computation.

We can compute these terms as follows:

∂tχ
ε(t, x) = ∂tχ(t, x, z) − ∂zi

χ(t, x, z)∂tψi(t, q)/
√

ε,

∂qiχε(t, x) = (∂qiχ)(t, x, z) − ε−1/2∂qiψk(t, q)(∂zk
χ)(t, x, z),

∂pi
χε(t, x) = (∂pi

χ)(t, x, z) + ε−1/2(∂zi
χ)(t, x, z),

∂qi∂qjχε(t, x) = (∂qi∂qjχ)(t, x, z) + ε−1/2
(−∂qjψk(t, q)(∂qi∂zk

χ)(t, x, z)

− ∂qi∂qjψk(t, q)(∂zk
χ)(t, x, z) − ∂qiψk(t, q)(∂qj∂zk

χ)(t, x, z)
)

+ ε−1∂qiψk(t, q)∂qjψl(t, q)(∂zk
∂zl

χ)(t, x, z).

∂pi
∂pj

χε(t, x) = (∂pi
∂pj

χ)(t, x, z) + ε−1/2
(
(∂zj

∂pi
χ)(t, x, z)

+ (∂pj
∂zi

χ)(t, x, z)
)

+ ε−1(∂zi
∂zj

χ)(t, x, z),

∂qi∂pj
χε(t, x) = (∂qi∂pj

χ)(t, x, z) + ε−1/2
(
(∂qi∂zj

χ)(t, x, z)

− ∂qiψk(t, q)(∂pj
∂zk

χ)(t, x, z)
)

− ε−1∂qiψk(t, q)(∂zj
∂zk

χ)(t, x, z),

where z is evaluated at z(t, x, ε) = (p−ψ(t, q))/
√

ε in each of the above formulae.
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Using these expressions, together with the SDE (16)–(17) we find

χ(t, xε
t, z

ε
t ) = χ(0, xε

0, z
ε
0)

+
∫ t

0

∂sχ(s, xε
s, z

ε
s) − ε−1/2(∂zi

χ)(s, xε
s, z

ε
s)∂sψi(s, qε

s)ds

+
∫ t

0

(
(∂qiχ)(s, xε

s, z
ε
s) − ε−1/2∂qiψk(s, qε

s)(∂zk
χ)(s, xε

s, z
ε
s)
)

×
[(

1√
ε
G1(s, xε

s, z
ε
s) + F1(s, xε

s, z
ε
s)
)

ds + σ1(s, xε
s)dWs

]i

+
∫ t

0

(
(∂pi

χ)(s, xε
s, z

ε
s) + ε−1/2(∂zi

χ)(s, xε
s, z

ε
s)
)

×
[(

1√
ε
G2(s, xε

s, z
ε
s) + F2(s, xε

s, z
ε
s)
)

ds + σ2(s, xε
s)dWs

]
i

+
1
2

∫ t

0

Σij
11(s, x

ε
s)
[
(∂qi∂qjχ)(s, xε

s, z
ε
s)

+ ε−1/2
(− ∂qjψk(s, qε

s)(∂qi∂zk
χ)(s, xε

s, z
ε
s)

− ∂qi∂qjψk(s, qε
s)(∂zk

χ)(s, xε
s, z

ε
s)

− ∂qiψk(s, qε
s)(∂qj∂zk

χ)(s, xε
s, z

ε
s)
)

+ ε−1∂qiψk(s, qε
s)∂qjψl(s, qε

s)(∂zk
∂zl

χ)(s, xε
s, z

ε
s)
]
ds

+
∫ t

0

(Σ12)i
j(s, x

ε
s)
[
(∂qi∂pj

χ)(s, xε
s, z

ε
s) + ε−1/2

(
(∂qi∂zj

χ)(s, xε
s, z

ε
s)

− ∂qiψk(s, qε
s)(∂pj

∂zk
χ)(s, xε

s, z
ε
s)
)

− ε−1∂qiψk(s, qε
s)(∂zj

∂zk
χ)(s, xε

s, z
ε
s)
]
ds

+
1
2

∫ t

0

(Σ22)ij(s, xε
s)
[
(∂pi

∂pj
χ)(s, xε

s, z
ε
s)

+ ε−1/2
(
(∂zj

∂pi
χ)(s, xε

s, z
ε
s)

+ (∂pj
∂zi

χ)(s, xε
s, z

ε
s)
)

+ ε−1(∂zi
∂zj

χ)(s, xε
s, z

ε
s)
]
ds.

Multiplying by ε and collecting powers, we arrive at∫ t

0

(Lχ)(s, xε
s, z

ε
s)ds = ε1/2(Rε

1)t + ε (χ(t, xε
t, z

ε
t ) − χ(0, xε

0, z
ε
0) + (Rε

2)t) , (21)

where we define

(Lχ)(t, x, z) =
(

1
2
Σij

11(t, x)∂qiψk(t, q)∂qjψl(t, q) (22)

− (Σ12)i
l(t, x)∂qiψk(t, q) +

1
2
(Σ22)kl(t, x)

)
(∂zk

∂zl
χ)(t, x, z)

+
(
(G2)k(t, x, z) − ∂qiψk(t, q)Gi

1(t, x, z)
)
(∂zk

χ)(t, x, z),
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(Rε
1)t (23)

=
∫ t

0

(∂zi
χ)(s, xε

s, z
ε
s)∂sψi(s, qε

s)ds −
∫ t

0

(∂qiχ)(s, xε
s, z

ε
s)G

i
1(s, x

ε
s, z

ε
s)ds

+
∫ t

0

∂qiψk(s, qε
s)(∂zk

χ)(s, xε
s, z

ε
s) [F1(s, xε

s, z
ε
s)ds + σ1(s, xε

s)dWs]
i

−
∫ t

0

(∂zi
χ)(s, xε

s, z
ε
s) [F2(s, xε

s, z
ε
s)ds + σ2(s, xε

s)dWs]i

−
∫ t

0

(∂pi
χ)(s, xε

s, z
ε
s)(G2)i(s, xε

s, z
ε
s)ds

− 1
2

∫ t

0

Σij
11(s, x

ε
s)
(−∂qjψk(s, qε

s)(∂qi∂zk
χ)(s, xε

s, z
ε
s)

− ∂qi∂qjψk(s, qε
s)(∂zk

χ)(s, xε
s, z

ε
s) − ∂qiψk(s, qε

s)(∂qj∂zk
χ)(s, xε

s, z
ε
s)
)
ds

−
∫ t

0

(Σ12)i
j(s, x

ε
s)
(
(∂qi∂zj

χ)(s, xε
s, z

ε
s) − ∂qiψk(s, qε

s)(∂pj
∂zk

χ)(s, xε
s, z

ε
s)
)
ds

−
∫ t

0

(Σ22)ij(s, xε
s)(∂zj

∂pi
χ)(s, xε

s, z
ε
s)ds,

and

(Rε
2)t (24)

= −
∫ t

0

∂sχ(s, xε
s, z

ε
s)ds

−
∫ t

0

(∂qiχ)(s, xε
s, z

ε
s) [F1(s, xε

s, z
ε
s)ds + σ1(s, xε

s)dWs]
i

−
∫ t

0

(∂pi
χ)(s, xε

s, z
ε
s) [F2(s, xε

s, z
ε
s)ds + σ2(s, xε

s)dWs]i

− 1
2

∫ t

0

Σij
11(s, x

ε
s)(∂qi∂qjχ)(s, xε

s, z
ε
s)ds

−
∫ t

0

(Σ12)i
j(s, x

ε
s)(∂qi∂pj

χ)(s, xε
s, z

ε
s)ds

− 1
2

∫ t

0

(Σ22)ij(s, xε
s)(∂pi

∂pj
χ)(s, xε

s, z
ε
s)ds.

First, think of simply homogenizing (18) to a quantity of the form

∫ t

0

G̃(s, xε
s)ds.

Suppose we have a candidate for G̃. If we can find a C1,2 solution, χ, to the PDE

(Lχ)(t, x, z) = G(t, x, z) − G̃(t, x)
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then substituting this into (21) gives
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, xε
s)ds (25)

= ε1/2(Rε
1)t + ε (χ(t, xε

t, z
ε
t ) − χ(0, xε

0, z
ε
0) + (Rε

2)t) .

Given sufficient growth bounds for χ and its derivatives, one anticipates that
the right hand side of (25) vanishes in the limit. If in addition, G̃ is Lipschitz in
p, uniformly in (t, q), then, based on Assumption 3.1, one expects

∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, qε
s, ψ(s, qε

s))ds → 0

as ε → 0+.
We make this informal discussion precise in Theorem 1, below. For this, we

will need the following assumptions:

Assumption 3.2. For all T > 0, the following quantities are polynomially
bounded in z, with the bounds uniform on [0, T ] × R

n+m:
G1, F1, G2, F2, σ1, σ2, ∂tψ, ∂qiψ, ∂qi∂qjψ. If σ1 = 0 then we can remove the
requirement on ∂qi∂qjψ.

Recall that an R
l-valued function, φ(t, x, z), is called polynomially bounded in z,

uniformly on [0, T ] × R
n+m if there exists q, C > 0 such that

‖φ(t, x, z)‖ ≤ C(1 + ‖z‖q)

for all (t, x, z) ∈ [0, T ] ×R
n+m ×R

m. In particular, if φ is independent of z, this
just means it is bounded on [0, T ] × R

n+m. Applying this to ψ, we note that
Assumption 3.2 implies ψ is Lipschitz in q, uniformly in t ∈ [0, T ].

Assumption 3.3. Given a continuous G : [0,∞) × R
n+m × R

m → R, assume
that there exists a C1,2 function χ : [0,∞) ×R

n+m ×R
m → R and a continuous

function G̃(t, x) : [0,∞) × R
n+m → R that together satisfy the PDE

(Lχ)(t, x, z) = G(t, x, z) − G̃(t, x), (26)

where the differential operator, L, is defined in (22).
Assume that, for a given T > 0, G̃ is Lipschitz in p, uniformly for (t, q) ∈

[0, T ] ×R
n. Also suppose that χ, its first derivatives, and the second derivatives

∂qi∂qjχ, ∂qi∂pj
χ, ∂qi∂zj

χ, ∂pi
∂pj

χ, and ∂pi
∂zj

χ are polynomially bounded in z,
uniformly for (t, x) ∈ [0, T ] × R

n+m. If σ1 = 0 then the only second derivatives
that we require to be polynomially bounded are ∂pi

∂pj
χ and ∂pi

∂zj
χ.

Theorem 1. Fix T > 0. Let Assumptions 3.1–3.3 hold and xε
t = (qε

t , p
ε
t) satisfy

the SDE (16)–(17). Then for any p > 0 we have

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, xε
s)ds

∣∣∣∣
p
]

= O(εp/2).
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and

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, qε
s, ψ(s, qε

s))ds

∣∣∣∣
p
]

= O(εp/2)

as ε → 0+.

Proof. Fix T > 0. First let p ≥ 2. (25) gives

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, xε
s)ds

∣∣∣∣
p
]

≤ 3p−1

(
εp/2E

[
sup

t∈[0,T ]

|(Rε
1)t|p

]
+ 2pεpE

[
sup

t∈[0,T ]

|χ(t, xε
t, z

ε
t )|p
]

+ εpE

[
sup

t∈[0,T ]

|(Rε
2)t|p

])
.

From (23) and (24) we see that Rε
1 and Rε

2 have the forms

(Rε
i)t =

∫ t

0

Vi(s, xε
s, z

ε
s)ds +

∫ t

0

Qij(s, xε
s, z

ε
s)dW j

s ,

where Vi and Qij are linear combinations of products of (components of) one or
more terms from the following list:
G1, F1, G2, F2, σ1, σ2, ∂tψ, ∂qiψ, ∂qi∂qjψ, ∂tχ, ∂qiχ, ∂zi

χ, ∂pi
χ, ∂qi∂qjχ, ∂qi∂pj

χ,
∂qi∂zj

χ, ∂pi
∂pj

χ, ∂pi
∂zj

χ. Also note that if σ1 = 0 then the only second deriva-
tives terms that are involved are ∂pi

∂pj
χ and ∂pi

∂zj
χ.

By assumption, these are all polynomially bounded in z, uniformly on [0, T ]×
R

n+m, as is χ. Therefore, letting C̃ denote a constant that potentially varies line
to line, there exists r > 0 such that

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, xε
s)ds

∣∣∣∣
p
]

≤ C̃εp/2

(
E

[(∫ T

0

|V1(s, xε
s, z

ε
s)|ds

)p]
+ E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

Q1j(s, xε
s, z

ε
s)dW j

s

∣∣∣∣
p
])

+ C̃εp

(
E

[(∫ T

0

|V2(s, xε
s, z

ε
s)|ds

)p]
+ E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

Q2j(s, xε
s, z

ε
s)dW j

s

∣∣∣∣
p
]

+ 1 + E

[
sup

t∈[0,T ]

‖zε
t‖rp

])
.
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Hölder’s inequality and polynomial boundedness yields

E

[(∫ T

0

|Vi(s, xε
s, z

ε
s)|ds

)p]
≤ T p−1E

[∫ T

0

|Vi(s, xε
s, z

ε
s)|pds

]

≤ C̃T p

(
1 + sup

t∈[0,T ]

E [‖zε
t‖rp]

)
.

Applying the Burkholder–Davis–Gundy inequality to the terms involving Qij ,
(as found in, for example, Theorem 3.28 in [7]), and then Hölder’s inequality, we
obtain

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

Qij(s, xε
s, z

ε
s)dW j

s

∣∣∣∣
p
]

≤ C̃E

⎡
⎣
(∫ T

0

‖Qi(s, xε
s, z

ε
s)‖2ds

)p/2
⎤
⎦

≤ C̃T p/2−1E

[∫ T

0

‖Qi(s, xε
s, z

ε
s)‖pds

]

≤ C̃T p/2

(
1 + sup

t∈[0,T ]

E[‖zε
t‖rp]

)
.

Combining these bounds, and using Assumption 3.1, we find

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, xε
s)ds

∣∣∣∣
p
]

≤ C̃εp/2

(
1 + sup

t∈[0,T ]

E[‖zε
t‖rp]

)

+ C̃εp

(
1 + sup

t∈[0,T ]

E[‖zε
t‖rp] + E

[
sup

t∈[0,T ]

‖zε
t‖rp

])

≤ C̃εp/2(1 + O(1)) + C̃εp
(
1 + O(1) + O(ε−δ)

)

for any δ > 0. Letting δ = p/2 we find

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, xε
s)ds

∣∣∣∣
p
]

= O(εp/2).
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Now use Hölder’s inequality, the uniform Lipschitz property of G̃, and
Assumption 3.1 again to compute

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, qε
s, ψ(s, qε

s))ds

∣∣∣∣
p
]

≤ O(εp/2) + C̃E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

G̃(s, xε
s) − G̃(s, qε

s, ψ(s, qε
s))ds

∣∣∣∣
p
]

≤ O(εp/2) + C̃T p−1E

[∫ T

0

|G̃(s, xε
s) − G̃(s, qε

s, ψ(s, qε
s))|pds

]

≤ O(εp/2) + C̃T p sup
t∈[0,T ]

E [‖pε
t − ψ(t, qε

t )‖p]

= O(εp/2).

This proves the claim for p ≥ 2. The result for arbitrary p > 0 then follows from
an application of Hölder’s inequality. ��

Formal Derivation of G̃. Formally applying the Fredholm alternative to (26)
motivates the form that G̃ must have in order for χ and its derivatives to possess
the growth bounds required by Theorem 1. The formal calculation is simple
enough that we repeat it here:
Let L∗ be the formal adjoint to L and suppose we have a solution, h(t, x, z), to

L∗h = 0,

∫
h(t, x, z)dz = 1. (27)

If χ and its derivatives grow slowly enough and h and its derivatives decay
quickly enough, then

∫
hLχdz will exist, the boundary terms from integration

by parts will vanish at infinity, and we find

0 =
∫

(L∗h)χdz =
∫

hL(χ)dz =
∫

h(G − G̃)dz =
∫

hGdz − G̃.

Therefore we must have

G̃(t, x) =
∫

h(t, x, z)G(t, x, z)dz.

In essence, the homogenized quantity is obtained by averaging over h, the instan-
taneous equilibrium distribution for the fast variables, z. This corroborates the
heuristic discussion in Sect. 2.

Limiting Equation. We now apply the above framework to prove existence of
a limiting process qε

t → qs and deriving an SDE satisfied by qs. Specifically, we
have:
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Theorem 2. Let T > 0, p ≥ 2, 0 < β ≤ p/2, xε
t = (qε

t , p
ε
t) satisfy the SDE

(16)–(17), suppose Assumptions 3.1–3.3 hold, and that the SDE for qε
t , (16), can

be rewritten in the form

qε
t = qε

0 +
∫ t

0

F̃ (s, xε
s)ds +

∫ t

0

G(s, xε
s, z

ε
s)ds +

∫ t

0

σ̃(s, xε
s)dWs + Rε

t (28)

where the components of G have the properties described in Assumption 3.3,

F̃ (t, x) : [0,∞) × R
n+m → R

n, σ̃(t, x) : [0,∞) × R
n+m → R

n×k

are continuous, Lipschitz in x, uniformly in t ∈ [0, T ], and Rε
t are continuous

semimartingales that satisfy

E

[
sup

t∈[0,T ]

‖Rε
t‖p

]
= O(εβ) as ε → 0+.

Suppose G̃ (from Assumption 3.3) is Lipschitz in x, uniformly in t ∈ [0, T ], and
we have initial conditions E[‖qε

0‖p] < ∞, E[‖q0‖p] < ∞, and
E[‖qε

0 − q0‖p] = O(εp/2). Then

E

[
sup

t∈[0,T ]

‖qε
t − qt‖p

]
= O(εβ) as ε → 0+

where qt satisfies the SDE

qt = q0+
∫ t

0

F̃ (s, qs, ψ(s, qs))ds +
∫ t

0

G̃(s, qs, ψ(s, qs))ds (29)

+
∫ t

0

σ̃(s, qs, ψ(s, qs))dWs.

Proof. We will prove this theorem by verifying all the hypotheses of Lemma A.3.
Define

R̃ε
t = Rε

t +
∫ t

0

G(s, xε
s, z

ε
s)ds −

∫ t

0

G̃(s, xε
s)ds.

Then

qε
t = qε

0 +
∫ t

0

F̃ (s, xε
s)ds +

∫ t

0

G̃(s, xε
s)ds +

∫ t

0

σ̃(s, xε
s)dWs + R̃ε

t

where F̃ + G̃ and σ̃ are Lipschitz in x, uniformly for t ∈ [0, T ] and

E

[
sup

t∈[0,T ]

‖R̃ε
t‖p

]
= O(εβ)
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by Theorem 1. E[‖qε
0 − q0‖p] = O(εβ) as ε → 0+ by assumption and

sup
t∈[0,T ]

E[‖pε
t − ψ(t, qε

t )‖p] = O(εp/2) as ε → 0+

by Assumption 3.1. Note that the assumptions also imply that a solution qt to
(29) exists for all t ≥ 0 [1].

For any ε > 0, using the Burkholder–Davis–Gundy inequality and Hölder’s
inequality we obtain the bound

E

[
sup

t∈[0,T ]

‖qε
t‖p

]

≤ 4p−1

(
E [‖qε

0‖p] + ε−p/2E

[(∫ T

0

‖G1(s, xε
s, z

ε
s)‖ds

)p]

+ E

[(∫ T

0

‖F1(s, xε
s, z

ε
s)‖ds

)p]
+ E

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0

σ1(s, xε
s)dWs

∥∥∥∥
p
])

≤ 4p−1

(
E [‖qε

0‖p] + ε−p/2T p−1

∫ T

0

E [‖G1(s, xε
s, z

ε
s)‖p] ds

+ T p−1

∫ T

0

E [‖F1(s, xε
s, z

ε
s)‖p] ds + C̃T p/2−1

∫ T

0

E [‖σ1(s, xε
s)‖p

F ] ds

)
.

Polynomial boundedness (see Assumption 3.2) gives

E

[
sup

t∈[0,T ]

‖qε
t‖p

]
≤ 4p−1

(
E [‖qε

0‖p] + C̃

∫ T

0

E [(1 + ‖zε
s‖q)p] ds

)
,

where we absorbed all factors of T and ε into the constant C̃. Using Assumption
3.1 then gives

E

[
sup

t∈[0,T ]

‖qε
t‖p

]
< ∞

for all ε sufficiently small.
Finally, for n > 0 define the stopping time τn = inf{t ≥ 0 : ‖qt‖ ≥ n}. Then

for 0 ≤ t ≤ T the Lipschitz properties together with the Burkholder–Davis–
Gundy and Hölder’s inequalities imply

E

[
sup

s∈[0,t]

‖qτn
s ‖p

]

≤ 3p−1

(
E[‖q0‖p] + E

[(∫ t∧τn

0

‖(F̃ + G̃)(s, qτn
s , ψ(s, qτn

s ))‖ds

)p
]

+ E

[
sup

t∈[0,t]

∥∥∥∥
∫ t∧τn

0

σ̃(s, qτn
s , ψ(s, qτn

s ))dWs

∥∥∥∥
p
])
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≤ 3p−1E[‖q0‖p] + C̃

∫ t

0

E [‖qτn
s ‖p] ds

+ C̃

∫ t

0

‖(F̃ + G̃)(s, 0, ψ(s, 0))‖p + ‖σ̃(s, 0, ψ(s, 0))‖p
F ds

≤ C̃

(
1 +
∫ t

0

E

[
sup

r∈[0,s]

‖qτn
r ‖p

]
ds

)
,

where C̃ changes line to line, and is independent of t.
The definition of τn, together with E[‖q0‖p] < ∞, implies that

sup
s≥0

E

[
sup

r∈[0,s]

‖qτn
r ‖p

]
< ∞.

Therefore we can apply Gronwall’s inequality to get

E

[
sup

t∈[0,T ]

‖qτn
t ‖p

]
≤ C̃eC̃T ,

where the constant C̃ is independent of n. Hence, the monotone convergence
theorem yields

E

[
sup

t∈[0,T ]

‖qt‖p

]
≤ C̃eC̃T < ∞.

This completes the verification that the hypotheses of Lemma A.3 hold, allow-
ing us to conclude that

E

[
sup

t∈[0,T ]

‖qε
t − qt‖p

]
= O(εβ) as ε → 0+.

��

4 Homogenization of Hamiltonian Systems

In this final section, we apply the above framework to our original Hamiltonian
system, (10)–(11) (in particular, m = n in this section) in order to prove the
existence of a limiting process qε

t → qt and derive a homogenized SDE for qt.
Specifically, in Sects. 4.1 and 4.2 we will study a class of Hamiltonian systems
for which the PDEs (27) for h and (26) for χ that are needed to derive the
limiting equation are explicitly solvable and the required bounds can be verified
by elementary means.
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The SDE (10)–(11) can be rewritten in the general form (16)–(17):

dqε
t =

1√
ε
∇zK(t, qε

t , z
ε
t )dt,

dpε
t =
(

− 1√
ε

(γl(t, xε
t) − ∇qψl(t, qε

t )) ∂zl
K(t, qε

t , z
ε
t ) − ∇qK(t, qε

t , z
ε
t )

− ∇qV (t, qε
t ) + F (t, xε

t)
)

dt + σ(t, xε
t)dWt,

where γl denotes the vector obtained by taking the lth column of γ. Specifically,

F1 = 0, σ1 = 0, σ2 = σ, G1(t, x, z) = ∇zK(t, q, z),
F2(t, x, z) = −∇qK(t, q, z) − ∇qV (t, q) + F (t, x),
G2(t, x, z) = − (γl(t, x) − ∇qψl(t, q)) ∂zl

K(t, q, z).

In particular, σ1 = 0, so below we use the definition of C1,2 applicable to this
case.

The operator L, (22), and its formal adjoint have the following form:

(Lχ)(t, x, z) =
1
2
Σkl(t, x)(∂zk

∂zl
χ)(t, x, z)

− γ̃kl(t, x)∂zl
K(t, q, z)(∂zk

χ)(t, x, z),

(L∗h)(t, x, z) = ∂zk

(
1
2
Σkl(t, x)∂zl

h(t, x, z) (30)

+ γ̃kl(t, x)∂zl
K(t, q, z)h(t, x, z)

)
,

where
Σij =

∑
ρ

σiρσjρ (31)

and γ̃ was defined in (14). Here σ and Σ denote what were σ2 and Σ22 respectively
in (20) and σ1 = 0. In particular, the indices on Σ have the meaning Σij ≡
(Σ22)ij .

4.1 Computing the Noise Induced Drift

In general, an explicit solution to L∗h = 0 is not available, and so the homoge-
nized equation can only be defined implicitly, as in Theorem 2. However, there
are certain classes of systems where we can explicitly derive the form of the
additional vector field, G̃, appearing in the homogenized equation. In [8], one
such class was studied by a different method. Here, we explore the case where
the noise and dissipation satisfy the fluctuation dissipation relation pointwise
for a time and state dependent generalized temperature T (t, q),

Σij(t, q) = 2kBT (t, q)γij(t, q). (32)
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where Σ was defined in (31). We will make Assumptions A.1–A.4, but make no
further constraints on the form of the Hamiltonian here.

As can be verified by a direct calculation, under the assumption (32), the
adjoint equation (30) is solved by

h(t, q, z) =
1

Z(t, q)
exp[−β(t, q)K(t, q, z)], (33)

where we define β(t, q) = 1/(kBT (t, q)) and Z, the “partition function”, is chosen
so that

∫
hdz = 1. Note that Assumption A.3 ensures such a normalization

exists. We also point out that in this case, the antisymmetric part of γ̃ does not
contribute to the right hand side of (30).

An interesting point to note is that when the antisymmetric part of γ̃ vanishes
(physically, for K quadratic in z this means a vanishing magnetic field), the
vector field that we are taking the divergence of in (30) vanishes identically. When
γ̃ has a non-vanishing antisymmetric part, only once we take the divergence does
the expression in (30) vanish.

From (13), we see that the terms that require homogenization are

G(t, qε
t , z

ε
t ) = − (γ̃−1)ij(t, qε

t )∂qjK(t, qε
t , z

ε
t )dt (34)

+ (zε
t )j∂ql(γ̃−1)ij(t, qε

t )∂zl
K(t, qε

t , z
ε
t )dt.

Using (33), the formal calculation of Sect. 3.2 gives

G̃(t, q) = −(γ̃−1)ij(t, q)〈∂qjK(t, q, z)〉 +
∂ql(γ̃−1)il(t, q)

β(t, q)
,

where we define

〈∂qjK(t, q, z)〉 =
1

Z(t, q)

∫
∂qjK(t, q, z) exp[−β(t, q)K(t, q, z)]dz. (35)

Of course, this calculation is only formal. In the next section, we study a par-
ticular case where everything can be made rigorous.

4.2 Rigorous Homogenization of a Class of Hamiltonian Systems

In this section we explore a class of Hamiltonian systems for which Assumption
3.3 can be rigorously verified via an explicit solution to the PDE for χ. We
will work with Hamiltonian systems that satisfy Assumptions A.1–A.5, A.7. In
particular, we are restricting to the class of Hamiltonians with

K(t, q, z) = K̃(t, q, Aij(t, q)zizj), (36)

where A(t, q) is valued in the space of positive definite n × n-matrices. We will
write K̃ ≡ K̃(t, q, ζ) and K̃ ′ ≡ ∂ζK̃.

We will also need the following relations between Σ, γ, and A to hold:
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Assumption 4.1. σ is independent of p and

Σ(t, q) = b1(t, q)A−1(t, q), γ(t, q) = b2(t, q)A−1(t, q) (37)

where, for every T > 0, the bi are bounded, C2 functions that have positive
lower bounds and bounded first derivatives, both on [0, T ] × R

n.

Note that these relations imply a fluctuation-dissipation relation with a time
and state dependent generalized temperature T = b1

2kBb2
.

In [8], we showed that Assumptions A.1–A.5 imply:

d(qε
t )

i = F̃ i(t, x)dt + σ̃i
ρ(t, x

ε
t)dW ρ

t + Gi(t, xε
t, z

ε
t )dt + d(Rε

t)
i,

where

F̃ i(t, x) = (γ̃−1)ij(t, q)(−∂tψj(t, q) − ∂qjV (t, q) + Fj(t, x)) + Si(t, q),

Gi(t, q, z) = − (γ̃−1)ij(t, q)(∂qj K̃)(t, q, Aij(t, q)zizj),

σ̃i
ρ(t, x) = (γ̃−1)ij(t, q)σjρ(t, x),

Si(t, q) = kBT (t, q)
(

∂qj (γ̃−1)ij(t, q) − 1
2
(γ̃−1)ik(t, q)A−1

jl (t, q)∂qkAjl(t, q)
)

,

(38)

and Rε
t is a family of continuous semimartingales. S(t, q) is called the noise

induced drift (see Eq. 3.26 in [8]).
Note, that with K(t, q, z) defined by (36), the first term in (34) consists of two

contributions—one coming from the q-dependence of K̃ and one coming from
the q-dependence of A. The G defined here comprises only the first contribution.
The method of [8] is able to homogenize the second term in (34), as well the
first contribution of the first term, leading to the noise induced drift, S, but
fails when K̃ depends explicitly on q. However, under certain circumstances, the
method developed in Sect. 3.2 is succeeds in homogenizing the system when K̃
has q dependence, as we now show.

We will need one final assumption:

Assumption 4.2. For every T > 0:

1. There exists ζ0 > 0 and C > 0 such that K̃ ′(t, q, ζ) ≥ C for all (t, q, ζ) ∈
[0, T ] × R

n × [ζ0,∞).
2. K̃(t, q, ζ), ∂t∂qiK̃(t, q, ζ), ∂qi∂ζK̃(t, q, ζ), and ∂qi∂qj K̃(t, q, ζ) are polynomi-

ally bounded in ζ, uniformly in (t, q) ∈ [0, T ] × R
n.

We are now prepared to prove the following homogenization result:

Theorem 3. Let xε
t = (qε

t , p
ε
t) satisfy the Hamiltonian SDE (10)–(11) and

suppose Assumptions A.1–A.5, A.7, 4.1, and 4.2 hold. Let p ≥ 2 and sup-
pose we have initial conditions that satisfy E[‖qε

0‖p] < ∞, E[‖q0‖p] < ∞, and
E[‖qε

0 − q0‖p] = O(εp/2). Then for any T > 0, 0 < β < p/2 we have

E

[
sup

t∈[0,T ]

‖qε
t − qt‖p

]
= O(εβ) as ε → 0+
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where qt is the solution to the SDE

dqi
t = (γ̃−1)ij(t, qt)(−∂tψj(t, qt) − ∂qjV (t, qt) + Fj(t, qt, ψ(t, qt)))dt (39)

+ Si(t, qt)dt + G̃i(t, qt)dt + (γ̃−1)ij(t, qt)σjρ(t, qt)dW ρ
t

with initial condition q0. See (14), (38), and (40) for the definitions of γ̃, S, and
G̃, respectively.

Proof. From [8], Assumptions A.1–A.5, A.7 imply:

1. qε
t satisifies an equation of the form (28), where, for every T > 0, F̃ , σ̃

are bounded, continuous, and Lipschitz in x, on [0, T ] × R
2n, with Lipschitz

constant uniform in t.
2. Assumptions 3.1 holds.
3. For any p > 0, T > 0, 0 < β < p/2 we have

E

[
sup

t∈[0,T ]

‖Rε
t‖p

]
= O(εβ) as ε → 0+.

Combined with polynomial boundedness of K̃ (Assumption 4.2) we see that
Assumption 3.2 also holds. Therefore, to apply Theorem 2, we have to verify
Assumption 3.3 and that the G̃ referenced therein is Lipschitz in x, uniformly
in t ∈ [0, T ].

From Sect. 3.2, we expect that

G̃i(t, q) = −(γ̃−1)ij(t, q)〈∂qj K̃(t, q, Aij(t, q)zizj)〉 (40)

where, similarly to (35),

〈∂qj K̃(t, q, ‖z‖2A)〉 =
1

Z(t, q)

∫
∂qj K̃(t, q, ‖z‖2A) exp[−β(t, q)K̃(t, q, ‖z‖2A)]dz.

Here we use the shorthand ‖z‖2A ≡ Aij(t, q)zizj when the implied values of t, q
are apparent from the context.

Using our assumptions, along with several applications of the DCT, one can
see that G̃ is C1 and, for every T > 0, is bounded with bounded first derivatives
on [0, T ] × R

n. In particular, it is Lipschitz in q, uniformly in t ∈ [0, T ].
We now turn to solving the equation

Lχ = G − G̃. (41)

Since G−G̃ is independent of p and depends on z only through ‖z‖2A, we look for
χ with the same behavior. Using the ansatz χ(t, q, z) = χ̃(t, q, ‖z‖2A), and defining
Gi(t, q, ζ) = −(γ̃−1)ij(t, q)(∂qj K̃)(t, q, ζ), leads (on account of the antisymmetry
of the matrix γ̃ − γ) to the ODE in the variable ζ:

ζχ̃′′(t, q, ζ) +
(n

2
− β(t, q)ζK̃ ′(t, q, ζ)

)
χ̃′(t, q, ζ)

=
1

2b1(t, q)
(G(t, q, ζ) − G̃(t, q)).
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This has the solution

χ̃(t, q, ζ) =
1

2b1(t, q)

∫ ζ

0

ζ
−n/2
1 exp[β(t, q)K̃(t, q, ζ1)] (42)

×
∫ ζ1

0

ζ
(n−2)/2
2 exp[−β(t, q)K̃(t, q, ζ2)]

(
G(t, q, ζ2) − G̃(t, q)

)
dζ2dζ1

Therefore χ(t, q, z) ≡ χ̃(t, q, ‖z‖2A) solves the PDE (41). One can show that
it is C1,2 and that χ and its first derivatives are polynomially bounded in z,
uniformly for (t, q) ∈ [0, T ] × R

n. As a representative example, in AppendixB
we outline the proof that χ̃(t, q, ζ) is polynomially bounded in ζ, uniformly in
(t, q) ∈ [0, T ] ×R

n. The remainder of the computations are similar and we leave
them to the reader.

χ is independent of p, so ∂pi
∂pj

χ = 0 and ∂pi
∂zj

χ = 0. Therefore, this com-
pletes the verification of Assumption 3.3 and we are justified in using Theorem 2
to conclude

E

[
sup

t∈[0,T ]

‖qε
t − qt‖p

]
= O(εβ) as ε → 0+,

where qt satisfies the SDE

qt = q0+
∫ t

0

F̃ (s, qs, ψ(s, qs))ds +
∫ t

0

G̃(s, qs)ds +
∫ t

0

σ̃(s, qs)dWs

as claimed. ��
Lastly, we give an example of a general class of Hamiltonians that satisfy the

hypotheses of Theorem 3. The proof of this corollary is straightforward, so we
leave it to the reader.

Corollary 1. Consider the class of Hamiltonians of the form

H(t, q, p) =
k2∑

l=k1

dl(t, q)
[
Aij(t, q)(p − ψ(t, q))i(p − ψ(t, q))j

]l
+ V (t, q)

where 1 ≤ k1 ≤ k2 are integers and the following properties hold on [0, T ] × R
n

for every T > 0:

1. V is C2 and ∇qV is bounded and Lipschitz in q, uniformly in t ∈ [0, T ].
2. ψ is C3 and ∂tψ, ∂qiψ, ∂t∂qiψ, ∂qi∂qjψ, ∂t∂qj∂qiψ, and ∂ql∂qj∂qiψ are

bounded.
3. dl are C2, non-negative, bounded, and have bounded first and second

derivatives.
4. dk1 and dk2 are uniformly bounded below by a positive constant.
5. A is C2, positive-definite, and A, ∂tA, ∂qiA, ∂t∂qiA, and ∂qi∂qjA are bounded.
6. The eigenvalues of A are uniformly bounded below by a positive constant.
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Also suppose that

1. σ is independent of p and

Σ(t, q) = b1(t, q)A−1(t, q), γ(t, q) = b2(t, q)A−1(t, q)

where, for every T > 0, the bi are bounded, C2 functions with positive lower
bounds and bounded first derivatives.

2. γ is C2, is independent of p, and ∂tγ, ∂qiγ, ∂t∂qjγ, ∂qi∂qjγ are bounded on
[0, T ] × R

n.
3. The eigenvalues of γ are bounded below by some λ > 0.
4. γ, F , and σ are bounded.
5. F and σ are Lipschitz in x uniformly in t ∈ [0, T ].
6. There exists C > 0 such that the (random) initial conditions satisfy

Kε(0, xε
0) ≤ C

for all ε > 0 and all ω ∈ Ω.
7. There is a p ≥ 2 such that

E[‖qε
0‖p] < ∞, E[‖q0‖p] < ∞, and E[‖qε

0 − q0‖p] = O(εp/2).

Then all the hypotheses of Theorem 3 hold, in particular Assumptions A.1–A.5,
A.7, 4.1, and 4.2 hold, and hence, for any β ∈ (0, p

2

)
,

E

[
sup

t∈[0,T ]

‖qε
t − qt‖p

]
= O(εβ) as ε → 0+,

where xε
t = (qε

t , p
ε
t) satisfy the Hamiltonian SDE (10)–(11) and qt satisfies the

homogenized SDE, (39).

Acknowledgments. J. W. was partially supported by NSF grants DMS 131271 and
DMS 1615045.

A Material from [8]

In this appendix, we collect several useful assumptions and results from [8]. The
assumptions listed here are not used in the entirety of this current work. When
they are needed for a particular result we explicitly reference them.

Assumption A.1. We assume that the Hamiltonian has the form given in (9)
where K and ψ are C2 and K is non-negative. For every T > 0, we assume the
following bounds hold on [0, T ] × R

2n:

1. There exist C > 0 and M > 0 such that

max{|∂tK(t, q, z)|, ‖∇qK(t, q, z)‖} ≤ M + CK(t, q, z).
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2. There exist c > 0 and M ≥ 0 such that

‖∇zK(t, q, z)‖2 + M ≥ cK(t, q, z).

3. For every δ > 0 there exists an M > 0 such that

max

⎧⎪⎨
⎪⎩‖∇zK(t, q, z)‖,

⎛
⎝∑

ij

|∂zi
∂zj

K(t, q, z)|2
⎞
⎠

1/2
⎫⎪⎬
⎪⎭ ≤ M + δK(t, q, z).

Assumption A.2. For every T > 0, we assume that the following hold uni-
formly on [0, T ] × R

n:

1. V is C2 and ∇qV is bounded
2. γ is symmetric with eigenvalues bounded below by some λ > 0.
3. γ, F , ∂tψ, and σ are bounded.
4. There exists C > 0 such that the (random) initial conditions satisfy

Kε(0, xε
0) ≤ C

for all ε > 0 and all ω ∈ Ω.

Assumption A.3. We assume that for every T > 0 there exists c > 0, η > 0
such that

K(t, q, z) ≥ c‖z‖2η

on [0, T ] × R
2n.

Assumption A.4. We assume that γ is C1 and is independent of p.

Assumption A.5. We assume that K has the form

K(t, q, z) = K̃(t, q, Aij(t, q)zizj)

where K̃(t, q, ζ) is C2 and non-negative on [0,∞) × R
n × [0,∞) and A(t, q) is

a C2 function whose values are symmetric n × n-matrices. We also assume that
for every T > 0, the eigenvalues of A are bounded above and below by some
constants C > 0 and c > 0 respectively, uniformly on [0, T ] × R

n.
We will write K̃ ′ for ∂ζK̃ and will use the abbreviation ‖z‖2A for Aij(t, q)zizj

when the implied values of t and q are apparent from the context.

Assumption A.7. We assume that, for every T > 0, ∇qV , F , and σ are Lip-
schitz in x uniformly in t ∈ [0, T ]. We also assume that A and γ are C2, ψ is
C3, and ∂tψ, ∂qiψ, ∂qi∂qjψ, ∂t∂qiψ, ∂t∂qj∂qiψ, ∂ql∂qj∂qiψ, ∂tγ, ∂qiγ, ∂t∂qjγ,
∂qi∂qjγ, ∂tA, ∂qiA, ∂t∂qiA, and ∂qi∂qjA are bounded on [0, T ] × R

2n for every
T > 0.

Note that, combined with Assumptions A.1–A.4, this implies γ̃, γ̃−1, ∂tγ̃
−1,

∂qi γ̃−1, ∂t∂qj γ̃−1, and ∂qi∂qj γ̃−1 are bounded on compact t-intervals.
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Lemma A.1. Under Assumptions A.1 and A.2, for any T > 0, p > 0 we have

E

[
sup

t∈[0,T ]

‖qε
t‖p

]
< ∞.

Lemma A.2. Under Assumptions A.1–A.3, for any T > 0, p > 0 we have

sup
t∈[0,T ]

E[‖pε
t − ψ(t, qε

t )‖p] = O(εp/2) as ε → 0+

and for any p > 0, T > 0, 0 < β < p/2 we have

E

[
sup

t∈[0,T ]

‖pε
t − ψ(t, qε

t )‖p

]
= O(εβ) as ε → 0+.

The following is a slight variant of the result from [8], but the proof is
identical.

Lemma A.3. Let T > 0 and suppose we have continuous functions F̃ (t, x) :
[0,∞)×R

n+m → R
n, σ̃(t, x) : [0,∞)×R

n+m → R
n×k, and ψ : [0,∞)×R

n → R
m

that are Lipschitz in x, uniformly in t ∈ [0, T ].
Let Wt be a k-dimensional Wiener process, p ≥ 2 and β > 0 and suppose that

we have continuous semimartingales qt and, for each 0 < ε ≤ ε0, R̃ε
t, xε

t = (qε
t , p

ε
t)

that satisfy the following properties:

1. qε
t = qε

0 +
∫ t

0
F̃ (s, xε

s)ds +
∫ t

0
σ̃(s, xε

s)dWs + R̃ε
t.

2. qt = q0 +
∫ t

0
F̃ (s, qs, ψ(s, qs))ds +

∫ t

0
σ̃(s, qε

s, ψ(s, qs))dWs.
3. E[‖qε

0 − q0‖p] = O(εβ) as ε → 0+.
4. E

[
supt∈[0,T ] ‖R̃ε

t‖p
]

= O(εβ) as ε → 0+.

5. supt∈[0,T ] E[‖pε
t − ψ(t, qε

t )‖p] = O(εβ) as ε → 0+.

6. E
[
supt∈[0,T ] ‖qε

t‖p
]

< ∞ for all ε > 0 sufficiently small.

7. E
[
supt∈[0,T ] ‖qt‖p

]
< ∞.

Then

E

[
sup

t∈[0,T ]

‖qε
t − qt‖p

]
= O(εβ) as ε → 0+.

B Polynomial Boundedness of χ̃

Changing variables, χ̃ can be expressed as

χ̃(t, q, ζ) =
1

2b1(t, q)
ζ

∫ 1

0

exp[β(t, q)K̃(t, q, sζ)]

×
∫ 1

0

r(m−2)/2 exp[−β(t, q)K̃(t, q, rsζ)]
(
G(t, q, rsζ) − G̃(t, q)

)
drds.
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Applying the DCT to this expression several times, one can prove that χ̃ is C1,2.
Using the fact that K̃ and ∂qiK̃ are polynomially bounded in ζ, uniformly in
(t, q) ∈ [0, T ] × R

n, one can see that χ̃(t, q, ζ) is bounded on [0, T ] × R
n × [0, ζ0]

for any ζ0 > 0. From Assumption 4.2, there exists ζ0 and C > 0 such that
K̃ ′(t, q, ζ) ≥ C for all (t, q, ζ) ∈ [0, T ] × R

n × [ζ0,∞).
By combining (42) with (40), one finds that for ζ ≥ ζ0, χ̃ can alternatively

be written as

χ̃(t, q, ζ) = χ̃(t, q, ζ0) +
1

2b1(t, q)

∫ ζ

ζ0

ζ
−m/2
1 exp[β(t, q)K̃(t, q, ζ1)]

×
∫ ∞

ζ1

exp[−β(t, q)K̃(t, q, ζ2)]ζ
(m−2)/2
2 (G̃(t, q) − G(t, q, ζ2))dζ2dζ1.

Therefore, if we can show that the second term has the polynomial boundedness
property then so does χ̃, and hence χ.

Letting C̃ denote a constant that potentially changes in each line and choos-
ing ζ0 as in Assumption 4.2, we have

∥∥∥∥ 1
2b1(t, q)

∫ ζ

ζ0

ζ
−m/2
1 exp[β(t, q)K̃(t, q, ζ1)]

×
∫ ∞

ζ1

exp[−β(t, q)K̃(t, q, ζ2)]ζ
(m−2)/2
2 (G̃(t, q) − G(t, q, ζ2))dζ2dζ1

∥∥∥∥
≤ C̃

∫ ζ

ζ0

ζ
−m/2
1 exp[β(t, q)K̃(t, q, ζ1)]

×
∫ ∞

ζ1

exp[−β(t, q)K̃(t, q, ζ2)]ζ
(m−2)/2+q
2 dζ2dζ1

≤ C̃ζ
−m/2
0

∫ ζ

ζ0

exp[β(t, q)K̃(t, q, ζ1)]

×
∫ ∞

ζ1

exp[−β(t, q)K̃(t, q, ζ2)]K̃(t, q, ζ2)((m−2)/2+q)/ηK̃ ′(t, q, ζ2)dζ2dζ1

= C̃ζ
−m/2
0

∫ ζ

ζ0

exp[β(t, q)K̃(t, q, ζ1)]

×
∫ ∞

K̃(t,q,ζ1)

exp[−β(t, q)u]u((m−2)/2+q)/ηdudζ1

for some q > 0. To obtain the first inequality, we use polynomial boundedness
of ∂qiK̃. For the second, we used Assumption (A.3) together with the fact that
K̃ ′ ≥ C > 0 on [0, T ] × R

n × [ζ0,∞).
Therefore we obtain

‖χ̃(t, q, ζ)‖ ≤ C̃

(
1 +
∫ ζ

ζ0

P (K̃(t, q, ζ1))dζ1

)
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for some polynomial P (x) with positive coefficients that are independant of t
and q. Polynomial boundedness of K̃ then implies

‖χ̃(t, q, ζ)‖ ≤ C̃

(
1 +
∫ ζ

ζ0

Q(ζ1)dζ1

)

for some polynomial Q(ζ). This proves the desired polynomial boundedness prop-
erty for χ̃.

References

1. Khasminskii, R.: Stochastic Stability of Differential Equations, vol. 66. Springer,
Heidelberg (2011)

2. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Krieger
Publishing Company (1992)

3. Ortega, J.M.: Matrix Theory: A Second Course. Springer, Berlin (2013)
4. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford

(2001)
5. Hottovy, S., McDaniel, A., Volpe, G., Wehr, J.: The Smoluchowski-Kramers limit of

stochastic differential equations with arbitrary state-dependent friction. Commun.
Math. Phys. 336, 1259–1283 (2015)

6. Birrell, J., Wehr, J.: Phase space homogenization of noisy Hamiltonian systems.
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Abstract. We consider one-dimensional long-range spin models (usu-
ally called Dyson models), consisting of Ising ferromagnets with slowly
decaying long-range pair potentials of the form 1/|i − j|α, mainly focus-
ing on the range of slow decays 1 < α ≤ 2. We describe two recent
results, one about renormalization and one about the effect of external
fields at low temperature.

The first result states that a decimated long-range Gibbs measure in
one dimension becomes non-Gibbsian, in the same vein as comparable
results in higher dimensions for short-range models.

The second result addresses the behaviour of such models under inho-
mogeneous fields, in particular external fields which decay to zero poly-
nomially as 1/(|i| + 1)γ . We study how the critical decay power of the
field, γ, for which the phase transition persists and the decay power α
of the Dyson model compare, extending recent results for short-range
models on lattices and on trees. We also briefly point out some analogies
between these results.

Keywords: Long-range Ising models · Hidden phase transitions ·
Generalized Gibbs measures · Slowly decaying correlated external fields

1 Introduction

In this short review we investigate some properties of one-dimensional long-
range spin models, also known as Dyson models. In his original work, Dyson [13]
considered an Ising spin system with formal Hamiltonian given by
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H(ω) = −
∑

i>j

J(|i − j|)ωiωj

and J(n) ≥ 0 for n ∈ N e.g. of the form J(n) = n−α.
There is no phase transition for this model, if the series M0 =

∑∞
n=1 J(n) is

infinite, since then there is an infinite energy gap between the ground states
and all other states, which yields that at all finite temperatures the system is
expected to be ordered. Neither is there a transition if |{n : J(n) �= 0}| < ∞, by
[49], since then the system is disordered at all finite temperatures. See also [6] and
[8] for accessible proofs of different versions of this absence of a transition under
conditions of sufficiently fast polynomial decay of J(n). Thus in particular, there
is no phase transition for J(n) being of finite range, and neither for J(n) = n−α

with α > 2 [47].
A conjecture due to Kac and Thompson [34], early on, stated that there

should be a phase transition for low enough temperatures if and only if α ∈ (1, 2].
Dyson proved a part of the Kac–Thompson conjecture, namely that for long-
range models of the form n−α with α ∈ (1, 2) there is a phase transition. Note
that for M0 < ∞ the infinite-volume measure is well defined.

We will consider, analogously to Dyson, one-dimensional ferromagnetic mod-
els with slowly decaying pair interactions of the form J(|i − j|) = 1/|i − j|α, for
appropriate values of the decay parameter, α ∈ (1, 2], which display a phase
transition at low temperature. This makes Dyson models particularly interest-
ing, because they thus can exhibit phase coexistence even in one dimension,
which is very unusual. Varying this decay parameter plays a similar role as
varying the dimension in short-range models. This can be done in a continuous
manner, so one obtains analogues of well-defined models in continuously varying
non-integer dimensions. This is a major reason why these models have attracted
a lot of attention in the study of phase transitions and critical behaviour (see
e.g. [7] and references therein).

In this paper, we first sketch the proof of the fact that, at low enough temper-
ature, under a decimation transformation the low-temperature measures of the
Dyson models are mapped to non-Gibbsian measures. Indeed, similar to what
happens for short-range models in higher dimensions, in the phase transition
region (1 < α ≤ 2 and low enough temperature), decimating the Gibbs mea-
sures to half the spins leads to non-Gibbsianness of the decimated measures. This
is obtained by showing the alternating configuration to be a point of essential
discontinuity for the (finite-volume) conditional probabilities of the decimated
Gibbs measures.

Just as with external fields or boundary conditions, the configuration of
renormalised spins, acting on the system of “hidden spins” which are to be
integrated out, can prefer one of the phases, and there are choices where this
preference depends only on spins far away. The renormalised spins can act as
some kind of (possibly correlated) random field, acting on the other (hidden)
spins.

We have extended our analysis to consider the effects of more general, pos-
sibly decaying, external fields on Dyson models and discuss how Dyson models
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in external fields decaying to zero as 1/(|i| + 1)γ behave as regards phase coex-
istence. Again similarly to what happens in short-range models, it appears that
the existence of a plurality of Gibbs measures persists when the decay of the
field is fast enough, whereas for slowly decaying fields we expect that there is
only one Gibbs measure which survives, namely the one favoured by the field.
What the appropriate decay parameter of the field, γ, which separates the two
behaviours is, depends on the Dyson decay parameter α. This extends recent
results on short-range models on either lattices or trees.

The review is organized as follows. In Sect. 2, we introduce notations and
definitions of Gibbs measures and describe what is known about phase transitions
in Dyson models. In Sect. 3, we introduce the decimation transformation – a
renormalization transformation that keeps odd or even spins only – and sketch
how to prove non-Gibbsianness at low temperature for the decimated Gibbs
measures of the Dyson models. We show that, conditioned on the even spins to
be alternating, a “hidden phase transition” occurs in the system of odd spins.
In Sect. 4 we will discuss Dyson models in decaying fields.

2 Gibbs Measures and Dyson Models

2.1 Specifications and Measures

We refer to [17] and [5] for proofs and more details on the general formalism
considered here.

Dyson models are ferromagnetic Ising models with long-range pair interac-
tions in one dimension, possibly with an external field which we will take pos-
sibly inhomogeneous, random and/or correlated. We study these models within
a more general class of lattice (spin) models with Gibbs measures on infinite-
volume product configuration spaces (Ω,F , ρ) = (EZ, E⊗Z, μ⊗Z

o ), the single-site
state space being the Ising space E = {−1,+1}, with the a priori counting
measure μ0 = 1

2 (δ−1 + δ+1). We denote by S the set of the finite subsets of
Z and, for any Λ ∈ S, write (ΩΛ,FΛ, ρΛ) for the finite-volume configuration
space (EΛ, E⊗Λ, μ⊗Λ

o ) – and extend afterwards the notations when consider-
ing infinite subsets S ⊂ Z and (restricted) infinite-volume configuration spaces
(ΩS ,FS , μS) � σS .

Microscopic states or configurations, denoted by σ, ω, η, τ, , etc., are elements
of Ω equipped with the product topology of the discrete topology on E for which
these configurations are close when they coincide on large finite regions Λ (the
larger the region, the closer). For ω ∈ Ω, a neighborhood base is provided by

NL(ω) =
{

σ ∈ Ω : σΛL
= ωΛL

, σΛc
L

arbitrary
}

, L ∈ N, ΛL := [−L,+L] ∈ S.

For any integers N > L, we shall also consider particular open subsets of
neighborhoods

N+
N,L(ω) =

{
σ ∈ NL(ω) : σΛN \ΛL

= +ΛN \ΛL
, σ arbitrary otherwise

}
,

(
and similarly for N −

N,L(ω)
)
.
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We denote by C(Ω) the set of continuous (quasilocal) functions on Ω, char-
acterized by

f ∈ C(Ω) ⇐⇒ lim
Λ↑S

sup
σ,ω:σΛ=ωΛ

| f(ω) − f(σ) |= 0. (1)

Monotonicity for functions and measures concerns the natural partial (FKG)
order “≤”, which we have on our Ising spin systems: σ ≤ ω if and only if σi ≤ ωi

for all i ∈ Z. Its maximal and minimal elements are the configurations + and −,
and this order extends to functions: f : Ω −→ R is called monotone increasing
when σ ≤ ω implies f(σ) ≤ f(ω). For measures, we write μ ≤ ν if and only if
μ[f ] ≤ ν[f ] for all f monotone increasing1.

Macroscopic states are represented by probability measures on (Ω,F , ρ),
whose main description – at least in mathematical statistical mechanics – is
in terms of consistent systems of regular versions of finite-volume conditional
probabilities with prescribed boundary conditions, within the so-called DLR for-
malism [11,37,51]. To do so, one introduces families of probability kernels that
are natural candidates to represent such versions of conditional probabilities.

Definition 1 (Specification). A specification γ =
(
γΛ

)
Λ∈S on (Ω,F) is a

family of probability kernels γΛ : ΩΛ × FΛc −→ [0, 1]; (ω,A) �−→ γΛ(A | ω)
s.t. for all Λ ∈ S:

1. (Properness) For all ω ∈ Ω, γΛ(B|ω) = 1B(ω) when B ∈ FΛc .
2. (Finite-volume consistency) For all Λ ⊂ Λ′ ∈ S, γΛ′γΛ = γΛ′ where

∀A ∈ F , ∀ω ∈ Ω, (γΛ′γΛ)(A|ω) =
∫

Ω

γΛ(A|σ)γΛ′(dσ|ω). (2)

These kernels also act on functions and on measures: for all f ∈ C(Ω) or
μ ∈ M+

1 ,

γΛf(ω) :=
∫

Ω

f(σ)γΛ(dσ|ω) = γΛ[f |ω]

and
μγΛ[f ] :=

∫

Ω

(γΛf)(ω)dμ(ω) =
∫

Ω

γΛ[f |ω]μ(dω).

Definition 2 (DLR measures). A probability measure μ on (Ω,F) is said to
be consistent with a specification γ (or specified by γ) when for all A ∈ F and
Λ ∈ S.

μ[A|FΛc ](ω) = γΛ(A|ω), μ−a.e. ω. (3)

We denote by G(γ) the set of measures consistent with γ which forms a Choquet
simplex [12,20].

A specification γ is said to be quasilocal when for any local function f , the
image γΛf should be a continuous function of the boundary condition:

γ quasilocal ⇐⇒ γΛf ∈ C(Ω) for any f local (or any f in C(Ω)). (4)

1 We denote μ[f ] for the expectation Eμ[f ] under a measure μ.
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A measure is said to be quasilocal when it is specified by a quasilocal
specification.

A particularly important subclass of quasilocal measures consists of the Gibbs
measures with (formal) Hamiltonian H defined via a potential Φ, a family Φ =
(ΦA)A∈S of local functions ΦA ∈ FA. The contributions of spins in finite sets
A to the total energy define the finite-volume Hamiltonians with free boundary
conditions

∀Λ ∈ S, HΛ(ω) =
∑

A⊂Λ

ΦA(ω), ∀ω ∈ Ω. (5)

To define Gibbs measures, we require for Φ that it is Uniformly Absolutely
Convergent (UAC), i.e. that

∑
A	i supω |ΦA(ω)| < ∞,∀i ∈ Z. One then can give

sense to the Hamiltonian at volume Λ ∈ S with boundary condition ω defined for
all σ, ω ∈ Ω as HΦ

Λ (σ|ω) :=
∑

A∩Λ �=∅ ΦA(σΛωΛc)(< ∞). The Gibbs specification
at inverse temperature β > 0 is then defined by

γβΦ
Λ (σ | ω) =

1

ZβΦ
Λ (ω)

e−βHΦ
Λ (σ|ω)(ρΛ ⊗ δωΛc )(dσ) (6)

where the partition function ZβΦ
Λ (ω) is an important normalizing constant. Due

to the, in fact rather strong, UAC condition, these specifications are quasilocal.
It appears that the converse is also true up to a non-nullness condition2 (see e.g.
[18,26,36,42,52]) and one can take:

Definition 3 (Gibbs measures). μ ∈ M+
1 is a Gibbs measure iff μ ∈ G(γ),

where γ is a non-null and quasilocal specification.

Quasilocality, called Almost Markovianness in [52], is a natural way to extend
the global (two-sided) Markov property. When μ ∈ G(γ) is quasilocal, then for
any f local and Λ ∈ S, the conditional expectations of f w.r.t. the outside of Λ
are μ-a.s. given by γΛf , by (2), and each conditional probability has a version
which itself is a continuous function of the boundary condition, so one gets for
any ω

lim
Δ↑Z

sup
ω1,ω2∈Ω

∣∣∣μ
[
f |FΛc

]
(ωΔω1

Δc) − μ
[
f |FΛc

]
(ωΔω2

Δc)
∣∣∣ = 0 (7)

Thus, for Gibbs measures the conditional probabilities always have continu-
ous versions, or equivalently there is no point of essential discontinuity. Those
are configurations which are points of discontinuity for ALL versions of the
conditional probability. In particular one cannot make conditional probabilities
continuous by redefining them on a measure-zero set if such points exist. In the
generalized Gibbsian framework, one also says that such a configuration is a bad
configuration for the considered measure, see e.g. [42]. The existence of such bad
configurations implies non-Gibbsianness of the associated measures.

2 expressing that ∀Λ ∈ S, ∀A ∈ FΛ, ρ(A) > 0 implies that γΛ(A|ω) > 0 for any ω ∈ Ω.



128 R. Bissacot et al.

2.2 Dyson Models: Ferromagnets in One Dimension

Definition 4 (Dyson models). Let β > 0 be the inverse temperature and
consider 1 < α ≤ 2. We call a Dyson model with decay parameter α the Gibbs
specification (6) with pair-potential ΦD defined for all ω ∈ Ω by

ΦD
A (ω) = − 1

|i − j|α ωiωj when A = {i, j} ⊂ Z, and ΦD
A ≡ 0 otherwise. (8)

We shall also consider Dyson models with non-zero magnetic fields h =
(hi)i∈Z acting as an extra self-interaction part ΦD

A (ω) = −hiωi

when A = {i} ⊂ Z

We first use that as a consequence of the FKG property [22,30], the Dyson
specification is monotonicity-preserving3, which implies that the weak limits
obtained by using as boundary conditions the maximal and minimal elements of
the order ≤ are well defined and are the extremal elements of G(γD).

Proposition 1 ([19,30,38]). For α > 1 (and not only for α ∈ (1, 2]), the weak
limits

μ−(·) := lim
Λ↑Z

γD
Λ (·|−) and μ+(·) := lim

Λ↑Z
γD
Λ (·|+) (9)

are well-defined, translation-invariant and extremal elements of G(γD). For any
f bounded increasing, any other measure μ ∈ G(γD) satisfies

μ−[f ] ≤ μ[f ] ≤ μ+[f ]. (10)

Moreover, μ− and μ+ are respectively left-continuous and right-continuous.

While μ− and μ+ coincide at high temperatures, and at all temperatures
when there is fast decay, α > 2, one main peculiarity of this one-dimensional
model is thus that when the range is long enough (1 < α ≤ 2), it is possible to
recover low-temperature behaviours usually associated to higher dimensions for
the standard Ising model, in particular phase transitions can occur. For more
details on the history of the proofs, one can consult [17] and references therein
or below.

Proposition 2 ([1,7,14,23–26,33,41,44,48]). The Dyson model with potential
(8), for 1 < α ≤ 2, exhibits a phase transition at low temperature:

∃βD
c > 0, such that β > βD

c =⇒ μ− �= μ+ and G(γD) = [μ−, μ+]

where the extremal measures μ+ and μ− are translation-invariant. They have
in particular opposite magnetisations μ+[σ0] = −μ−[σ0] = M0(β, α) > 0 at low
temperature. Moreover, the Dyson model in a non-zero homogeneous field h has
a unique Gibbs measure.
3 in the sense that for all bounded increasing functions f , and Λ ∈ S, the function

γD
Λ f is increasing.
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We remark that the infinite-volume limit of a state (or a magnetisation) in
which there is a + (resp. −)-measure or a Dyson model in a field h > 0 (resp.
h < 0) outside some interval is the same as that obtained from + (resp. −)-
boundary conditions (independent of the magnitude of h). This can be e.g. seen
by an extension of the arguments of [40], see also [39]. Notice that taking the
+-measure of the zero-field Dyson model outside a finite volume enforces this
same measure inside (even before taking the limit); adding a field makes it more
positive, and taking the thermodynamic limit then recovers the same measure
again.

The case of α = 2 is more complicated to analyse, and richer in its behaviour,
than the other ones. There exists a hybrid transition (the “Thouless effect”), as
the magnetisation is discontinuous while the energy density is continuous at
the transition point. Moreover, there is second transition below this transition
temperature. In the intermediate phase there is a positive magnetisation with
non-summable covariance, while at very low temperatures the covariance decays
at the same rate as the interaction, which is summable. For these results, see
[1,31,32,50], and also the more recent description in [44].

3 Decimation

We first apply a decimation transformation to the lattice 2Z. Similarly to what
was discussed in [15], to analyse whether the transformed measure is a Gibbs
measure, and in particular to show that it is non-Gibbsian, we have to show that
conditioned on a particular configuration of the transformed spins, the “hidden
spins” display a phase transition. If we choose this particular configuration to be
the alternating one, each hidden spin feels opposite terms from the left and the
right side, coming from all odd distances. Thus the conditioned model is a Dyson
model in zero field, at a reduced temperature. As such it has phase transition.

To translate this hidden phase transition into nonlocality of the “visible”
transformed spins follows straightforwardly the arguments of [15]. See [17] for
the details. We make use of the fact that one can define global specifications, so
there are no measurability problems due to global conditioning.

We start from μ+ as defined in (9), the +-phase of a Dyson model without
external field in the phase transition region, and apply the decimation transfor-
mation

T : (Ω,F) −→ (Ω′,F ′) = (Ω,F); ω �−→ ω′ = (ω′
i)i∈Z, with ω′

i = ω2i (11)

Denote ν+ := Tμ+ the decimated +-phase, formally defined as an image
measure via

∀A′ ∈ F ′, ν+(A′) = μ+(T−1A′) = μ+(A)

where
A = T−1A′ =

{
ω : ω′ = T (ω) ∈ A′}.

We study the continuity of conditional expectations under decimated Dyson
Gibbs measures of the spin at the origin when the outside is fixed in some special
configuration ω′

alt. By definition,
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ν+[σ′
0|F{0}c ](ω′) = μ+[σ0|FSc ](ω), ν+−a.s. (12)

where Sc = (2Z) ∩ {0}c, i.e. with S = (2Z)c ∪ {0} is not finite: the conditioning
is not on the complement of a finite set, and although the extension of the
DLR equation to infinite sets is direct in case of uniqueness of the DLR-measure
for a given specification [19,21,27], it can be more problematic otherwise: it is
valid for finite sets only and measurability problems might arise in case of phase
transitions when one wants to extend them to infinite sets. Nevertheless, beyond
the uniqueness case, such an extension was made possible by Fernández and
Pfister [19] in the case of attractive models. As we will make essential use of it,
we describe it now in our particular case. The concept they introduced is that of
a global specification, and this is in fact a central tool in some of our arguments.

Definition 5 (Global specification, [19]). A global specification Γ on Z is
a family of probability kernels Γ = (ΓS)S⊂Z on (ΩS ,FSc) such that for any S
subset of Z:

1. ΓS(·|ω) is a probability measure on (Ω,F) for all ω ∈ Ω.
2. ΓS(A|·) is FSc-measurable for all A ∈ F .
3. ΓS(B|ω) = 1B(ω) when B ∈ FSc .
4. For all S1 ⊂ S2 ⊂ Z, ΓS2ΓS1 = ΓS2 where the product of kernels is made
as in (2).

Similarly to the consistency with a (local) specification, one introduces the
compatibility of measures with a global specification.

Definition 6. Let Γ be a global specification. We write μ ∈ G(Γ), or say that
μ ∈ M+

1 is Γ-compatible, if for all A ∈ F and any S ⊂ Z,

μ[A|FSc ](ω) = ΓS(A|ω), μ−a.e. ω. (13)

Note, by considering S = Z, that G(Γ) contains at most one element.
In the case considered here, we get a global specification Γ+ such that μ+ ∈
G(Γ+), with S = (2Z)c ∪{0} consisting of the odd integers plus the origin. Hence
S = (2Z)c ∪ {0} and (12) yields for ν+-a.e. all ω′ ∈ NΛ′(ω′

alt) and ω ∈ T−1{ω′}:

ν+[σ′
0|F{0}c ](ω′) = Γ+

S [σ0|ω] μ+−a.e.(ω). (14)

to eventually get (see [17,19]) an expression of the latter in terms of a constrained
measure μ+,ω

(2Z)c∪{0}, with ω ∈ T−1{ω′} so that we get for any ω′ ∈ NΛ′(ω′
alt),

ν+[σ′
0|F{0}c ](ω′) = μ+,ω

(2Z)c∪{0} ⊗ δω2Z∩{0}c [σ0].

Thanks to monotonicity-preservation, the constrained measure is explicitly
built as the weak limit obtained by +-boundary conditions fixed after a freezing
the constraint to be ω on the even sites:

∀ω′ ∈ NΛ′(ω′
alt), ∀ω ∈ T−1{ω′},

μ+,ω
(2Z)c∪{0}(·) = lim

I∈S,I↑(2Z)c∪{0}
γD

I (· | +(2Z)c∪{0})ω2Z∩{0}c). (15)
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Observe that when a phase transition holds for the Dyson specification – at
low enough T for 1 < α ≤ 2 – the same is true for the constrained specification
with alternating constraint (although at a lower T). This phase transition then
implies non-Gibbsianness of ν+ (and for all other Gibbs measures of the model,
see [17]).

Theorem 1 ([17]). Let α ∈ (1, 2], let μ be a Gibbs measure for the interaction
given by (8) and let the transformation T be defined by (11). Then for low
temperatures, β > 2αβD

c , the decimated measure ν = T ◦ μ is non-Gibbs.

Sketch of Proof. The main idea is to prove that the alternating configuration is
an essential point of discontinuity for the decimated conditional expectations. As
already observed, because any non-fixed site at all odd distances has a positive
and a negative spin whose influences cancel, conditioning by this alternating con-
figuration yields a constrained model that is again a Dyson model at zero field,
but at a temperature which is higher by 2α. This again has a low-temperature
transition in our range of decays 1 < α ≤ 2. The coupling constants are indeed
multiplied by a factor 2−α, due to only even distances occurring between inter-
acting (hidden) spins.

To prove non-Gibbsianness in [17], we essentially follow the proof strategy
sketched in [15], by showing that within a neighborhood NL(ω′

alt), there exists
two subneighborhoods N ±

N,L of positive measure on which the conditional mag-
netizations defined on NN , L±

M+ = M+(ω) = μ+,ω+

(2Z)c∪{0}[σ0] and M− = M−(ω) = μ+,ω−

(2Z)c∪{0}[σ0] (16)

differ significantly.
The role of the “annulus” where configurations are constrained to be either

+ or − is played by two large intervals [−N,−L − 1] and [L + 1, N ]. Due to the
long range of the interaction, their might be a direct influence from the boundary
beyond the annulus, to the central interval. To avoid effects from this influence,
we take N much larger than L. An argument based on “equivalence of boundary
conditions” as in e.g. [6], under a choice N = L1/(α−1) then implies that (16)
does hardly depend on ω.

Once this choice of big annulus is made, observe that if we constrain the
spins in these two intervals to be either + or −, within these two intervals the
measures on the unfixed spins are close to those of the Dyson-type model in
a positive, c.q. negative, magnetic field. As those measures are unique Gibbs
measures, no influence from the boundary can be transmitted.

Indeed, in contrast to the case of the purely alternating configuration, in the
case when we condition on all primed spins to be + (resp. −) in these large annuli,
there is no phase transition and the system of unprimed spins has a unique Gibbs
measure. It is a Dyson model, again at a heightened temperature, but now
in a homogeneous external field, with positive (resp. negative) magnetisation
+M0(β, α) > 0 (resp. −M0(β, α) < 0), stochastically larger (resp. smaller) than
the zero-field + ( resp. −)-measure.



132 R. Bissacot et al.

In the −-case, in the annulus the magnetisation of the -even-distance- Dyson–
Ising model is essentially that of the model with a negative homogeneous external
field −h everywhere, which at low enough temperature and for L large enough is
close to (and in fact smaller than) the magnetisation of the Dyson–Ising model
under the zero-field −-measure, i.e to −M0(β, α) < 0. Thus the inner inter-
val where the constraint is alternating feels a −-like condition from outside its
boundary. On the other hand, the magnetisation with the constraint ω+ will be
close to or bigger than +M0(β, α) > 0 so that a non-zero difference is created at
low enough temperature. One needs again to adjust the sizes of L and N to be
sure that boundary effects from outside the annulus are negligible in the inner
interval.

Thus, for a given δ > 0, e.g. δ = M0(β, α)/2, for arbitrary L one can find
N(L) large enough, such that the expectation of the spin at the origin differs by
more than δ. One can therefore feel the influence from the decimated spins in
the far-away annulus, however large the central interval of decimated alternating
spins is chosen. Thus, indeed it holds that M+ − M− > δ, uniformly in L. ��

In our choice of decimated lattice we made use of the fact that the constrained
system, due to cancellations, again formed a zero-field Dyson-like model. This
does not work for decimations to more dilute lattices, but although the original
proofs of Dyson [13] and of Fröhlich and Spencer [24], or the Reflection Positivity
proof of [23] do no longer apply to such periodic-field cases, the contour-like
arguments of [7] and [33] could presumably still be modified to include such
cases. Compare also [16,35].

The analysis of [9] which proves existence of a phase transition for Dyson
models in random magnetic fields for a certain interval of α-values should imply
that in that case there are many more, random, configurations which all are
points of discontinuity. We note that choosing independent spins as a constraint
provides a random field which is correlated. However, these correlations decay
enough that this need actually not spoil the argument. Similarly, one should
be able to prove that decimation of Dyson models in a weak external field will
result in a non-Gibbsian measure. An interesting question would be to perform
the analysis of [45]) or [43] to get a.s. configuration-dependent correlation decays.

On the other side of the Gibbs-non-Gibbs analysis, when the range of the
interaction is lower, i.e. for α > 2, or the temperature is too high, unique-
ness holds, for all possible constraints and the transformed measures should be
Gibbsian. Some standard high-temperature results apply, which were already
discussed in [15].

About these shorter-range models, (i.e. long-range models with faster polyno-
mial decay), Redig and Wang [46] have proved that Gibbsianness was conserved,
providing in some cases (α > 3) a decay of correlation for the transformed
potential. In our longer-range models, for intermediate temperatures (below the
transition temperature but above the transition temperature of the alternating-
configuration-constrained model) decimating, both +- and −-measures, should
imply Gibbsianness, essentially due to the arguments as proposed for short-range
models in [29].
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4 Dyson Models in Decaying Fields

In this section we consider one-dimensional Dyson models in a decaying field
with decay parameter γ. The corresponding interaction ΦD

A (ω) is defined by

ΦD
A (ω) =

{
− J

|i−j|α ωiωj if A = {i, j}
− h

(|i|+1)γ ωi if A = {i} (17)

for some J, h > 0. The question raised in [5] is whether it is possible to extend
results from e.g. [7,9], and in particular to investigate whether and under which
conditions the existence of two distinct phases prevails in the presence of an
external field. Let us mention that one-dimensional Dyson models in a field were
considered before, for example in [35], where uniqueness was proven for fields
which are either strong enough (ΦD

{i} = hiωi, where there exists h0 > 0 such
that |hi| > h0) or periodic in large enough blocks.

The main tool we will use are the one-dimensional contours of [7]. Recall that
in [7] the authors prove that under the technical constraints α ∈ (α∗, 2], where
α∗ := 3 − log(3)/log(2), J(1) >> 1 and h = 0, there exists βD

c,0 > 0 such that
for all β > βD

c,0

M0(β, α) = μ+[σ0] = −μ−[σ0] > 0

i.e. there is spontaneous magnetization yielding non-uniqueness of the Gibbs
measures, μ+ �= μ−. This result was generalized to all values of α ∈ (1, 2] in [44],
again assuming the technical condition J(1) >> 1.

Phase coexistence in a positive external field is an unusual phenomenon,
since typically Gibbs measures for models in a field are unique. It was previ-
ously observed in nearest-neighbour pair potentials with polynomially decaying
fields in d ≥ 2, see [2,3,10] or for sufficiently fast decaying (but not necessarily
summable) fields on trees [4]. In [3] it is proven that in nearest-neighbour models
for γ > 1 and low enough temperatures, there are multiple Gibbs states, whereas
for γ < 1 there is a unique one.

Pirogov-Sinai is a robust and often applicable version of the Peierls contour
argument [28], applicable in d ≥ 2, which is the most generally applicable app-
roach in higher dimensions.

In [7], inspired by and extending results of the seminal paper of Fröhlich and
Spencer [24], the authors presented a contour argument which works even for
long-range models in one dimension, in particular, it worked for one-dimensional
Dyson models with α∗ < α ≤ 2. The techniques used in [7] rely on developing a
graphical representation of spin configurations in terms of triangular contours.

It turns out that for a one-dimensional long-range model in a decaying field,
depending on the relation between α and γ, there can be either one or two
extremal Gibbs measures. Let us emphasize that we manage to remove technical
restrictions both on on α and J(1). We can prove the following theorem.

Theorem 2 ([5]). Let α ∈ (1, 2] and γ > max{α − 1, α∗ − 1} be the exponents
of the Dyson model w.r.t. an interaction ΦD given by (17). Then, there exists
βD

c,h > 0 s.t. for all β > βD
c,h we have M0(β, α, γ) > 0, i.e. μ+ �= μ−.
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Sketch of Proof. The main idea of the proof is to extend the analysis in [7,9],
combined with [44]. Consider a finite-volume Gibbs measure on an interval, say
Λ = [−N,N ] and fix +-boundary conditions. Each spin configuration σ can be
uniquely mapped into a triangle configuration T = (T1, ..., Tn) where endpoints
of the triangles are defined by interface points dividing plus from minus spins.
Contours Γ are collections of triangles Ti such that they are in some sense well
separated from each other and subadditive, so that we obtain a lower bound for
the energy of given triangle configuration T . Phase coexistence will follow from
the well-known Peierls argument for d > 1, i.e. from the estimate that for β
sufficiently large

μ+
Λ [σo = −1] ≤ μ+

Λ [{o ∈ Γ}] ≤ 1
Z+

Λ

∑

Γ	o

∑

Γ compatible

e−βH(T ) <
1
2
.

The main difficulty then is to obtain a good energetic lower bound for the Hamil-
tonian including the effect of the external field. ��

Physically, an argument explaining the statement of the theorem goes as
follows: There is a competition between the effect of the pair interaction and that
of the external field. Having minus boundary conditions means that inserting a
large interval [−L,L] of plus spins will cost an energy of order

∑

|i|<L

∑

|j|>L

|i − j|−α = O(L2−α).

However, the gain in energy due to the spins following the external magnetic
field is of order ∑

|i|<L

|i|−γ = O(L1−γ).

Thus, (somewhat similar to an Imry–Ma argument), we see that for γ > α−1
we should expect that the field is too weak to overcome the boundary conditions
and the plus and minus measures are different: μ+ �= μ−.

When the opposite case pertains, that is γ < α− 1, there should be a unique
Gibbs measure, with a magnetisation in the direction of the field, whatever the
boundary conditions employed. We are in the process of rigorising this picture.

In fact, the analogous prediction in the 2-dimensional short-range model has
been fully proved by [3,10], also giving that the critical value for γ equals 1, where
is possible to prove the phase transition even in the critical case, assuming that
h is small enough. Here we have the same situation, we can extend the theorem
above for the case when γ = max{α − 1, α∗ − 1} if we take h small enough.

The restriction on γ involving α∗ seems due to technical reasons, since we
use arguments developed in [7]. However, from the physical argument sketched
above, we expect that these limitations should not be required and the argument
should work, just assuming the inequality between γ and α.

Remark Added in Proof: J. Littin has kindly informed us that he has per-
formed a similar analysis in which the signs of the external fields are chosen i.i.d.
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random and symmetric. In that case, instead of γ = α − 1, the threshold value
for phase transition stability becomes γ = α − 1

2 .
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Abstract. In 1997 Yves LeJan and Alain-Sol Sznitman provided a prob-
abilistic gateway in the form of a stochastic cascade model for the treat-
ment of 3d incompressible, Navier–Stokes equations in free space. The
equations themselves are noteworthy for the inherent mathematical chal-
lenges that they pose to proving existence, uniqueness and regularity of
solutions. The main goal of the present article is to illustrate and explore
the LeJan–Sznitman cascade in the context of a simpler quasi-linear pde,
namely the complex Burgers equation. In addition to providing some
unexpected results about these equations, consideration of mean-field
models suggests analysis of branching random walks having naturally
imposed time delays.

Keywords: Complex Burgers equation · Global well-possedness ·
Self-similarity · Mean-field equations · Stochastic cascades · Stochastic
explosion · Markov evolutionary processes

1 Introduction

Throughout his career Chuck Newman has demonstrated mathematical insights
that are remarkable for both their depth and their wide ranging relevance to
seemingly diverse areas of mathematics and science. There are many things to
admire about the way in which Chuck is able to resolve things mathematically.
The following story may be a lesser known example, but it is relevant to the
topic of this article, and is mainly being shared in admiring tribute to Chuck.
During the early 1980’s while still a professor at the University of Arizona,
Chuck attended a colloquium talk on fluids featuring a discussion of Burgers
equation. As some of us were leaving the talk, Chuck shared a scrap of paper
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in which he had doodled1 a striking connection between Burgers equation for
fluids and one of his first loves, statistical physics. Specifically, in a matter of
minutes, he had discovered that the magnetization in a finite volume Curie–
Weiss probability model is governed, as a function of inverse temperature and
external field, exactly by the same Burgers equation presented by the speaker
in a seemingly unrelated context of fluid flow. In addition to providing a rather
unique perspective on shocks in quasilinear pde’s in relation to spontaneous
magnetization, Chuck had quite cleverly provided new insights into a basic model
of interest to mathematical physics and probability; see [44]. In particular, early
representations of solutions to the Burgers’ equation as expected values in an
interesting probability model can just as well be attributed to Chuck Newman.

Proposition 1 (Newman, 1986). Let m = mn(h, β) = ES1 where {Si : i =
1, . . . , n} has the joint distribution Z−1 exp[β

2

∑
Jijsisj +

∑
hisi]

∏
ρ(dsi) with

Jij = J/2n, (J > 0), hi = h for all i, j and
∫

exp(Ks2)ρ(ds) < ∞ for all K > 0.
Then

∂m/∂β = Jm
∂m

∂h
+

J

2n

∂2m

∂h2
, m(h, 0) =

d

dh
ln
∫

ehsρ(ds).

As remarked in [44], in the usual spin-1/2 Ising models the measure ρ is
given by ρ(ds) = [δ(s − 1) + δ(s + 1)]ds

2 , and the resulting initial condition
is m(h, 0) = tanh(h). The classic space-time Burgers equation results by defin-
ing t = βJ , x = −h and ν = 1/n. Considerations of complex h arise naturally
in ([44], Theorem 6), see also [42,45], in connection with Chuck’s take on the
zeros of the partition function and the Riemann hypothesis. As will be seen, the
complexification of Burgers suggested by the LJS-cascade is in the initial data
and solutions, rather than their spatial domain.

The (unforced) three-dimensional incompressible Navier–Stokes equations
governing fluid velocity v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) and (scalar) pres-
sure p(x, t), in free space x ∈ R

3, t ≥ 0, are given for initial data v0 and viscosity
parameter ν > 0, by a system of quasi-linear partial differential equations

∂v

∂t
+ v · ∇v = νΔv − ∇p, ∇ · v = 0, v(x, 0+) = v0(x), x ∈ R

3, t > 0. (1)

The equation ∇ · v = 0 defines the incompressibility condition. The nonlinear
term v · ∇v is the result of representing the flow in a Lagrangian coordinate
system; i.e., ∂v

∂t +v ·∇v is the acceleration in a frame following a moving particle
and, as such, mathematically intrinsic to the equations.

Like the Riemann hypothesis, settling the question about the global existence
of smooth solutions for smooth initial data ranks among the millennial problems
1 The reference to “doodle” is deliberate. Once, when asked how he discovered his

central limit theorem for associated random variables given in [43], Chuck replied
that he had expected for some time that a central limit theorem should be possible
for ferromagnetic Ising models at high temperatures as a consequence of correlation
decay: “Then, one day I was doodling with the FKG inequalities and out popped just
the right correlation inequalities for the characteristic function of the magnetization”.
This would prove that central limit theorem.
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for mathematics. The following is the precise Clay prize formulation of a positive
resolution provided by Charles Fefferman [19].

Navier–Stokes Millennial Problem (MP): For divergence-free v0 ∈ S of
rapid decay, show that there exists p, v ∈ C∞(R3 × [0,∞)) satisfying (1), and
the finite energy condition that, for some C > 0,

∫

R3
|v(x, t)|2dx ≤ C, ∀t ≥ 0.

It may be noted that uniqueness is implicit in this formulation of the problem.
Also an alternative formulation posed on the torus with periodic boundary con-
ditions can be made in place of the free space formulation. Of course a negative
formulation is also possible. Since Fourier transform is a homeomorphism on the
Schwarz space S, an equivalent condition follows accordingly for the initial data.

The goal of the present article is to illustrate and explore a probabilistic gate-
way to three-dimensional incompressible Navier–Stokes equations (1) in Fourier
space discovered by Le Jan and Sznitman [37], hereafter referred to as the LJS-
cascade, but in the context of stochastic cascades derived from the ostensibly
simpler complex Burgers equation, and related mean-field cascades to be defined.
This will also give an opportunity to provide some contrasting remarks and/or
related results for the case of (1) and the LJS-cascade.

Recent treatments of the complexified Burgers equations are largely focussed
on blow-up singularities in finite time using Cole–Hopf transformations, i.e.,
loss of spatial analyticity; see [PS], [L]. For a comprehensive analytic treatment
of complex evolution equations, including Burgers, see [GG]. An approach to
singularities in Fourier space is given in [LS]. Our results are consistent, but
the methods are probabilistic. Hadamard ill-posedness is shown in Sect. 6.2. In
fact, for a mean-field model, compactly supported initial data in Fourier space
becomes L∞ in Fourier space in finite time, but without decay. However, in time
the solution actually regains regularity. This seems to be a new phenomenon.

As will be seen, two modifications of the original LJS-cascade are made
throughout this paper: (i) to permit the phenomena of stochastic explosion in
cascades where it may naturally happen in unforced equations, and (ii) to exploit
time-space self-similarity representation of solutions to (1) via a modification of
the stochastic cascade. The modified cascade will continue to be referred to as
the LJS-cascade.

The organization of this paper is as follows. The main features of a mild
formulation of (1) based on the LJS-cascade is provided in the next section as
motivating background. A few other notable probabilistic approaches to (1) are
also cited to provide a slightly broader perspective on (1), but the primary focus
here is the nature of the LJS-cascade in a simpler context of a complex Burgers
equation; one may also consult [56] for a survey. As in the case of (1), the LJS-
cascade dictates a certain probabilistically natural choice for the function spaces
in which the Burgers equation can be effectively analyzed. In particular, one is
naturally led to Hardy space formulations as defined by functions whose Fourier
transform vanish for negative Fourier frequencies and suitably decays for large
positive frequencies. For contrast and comparison, the LJS-cascade associated
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with (1) leads naturally to certain Besov-type solution spaces; e.g., see [4,37].
In any case, once this determination is made, the associated LJS-cascade may
be broadly viewed in terms of a time-delayed2 branching random walk. More
specifically, two essential features of the LJS-cascade are (a) the Yule process,
viewed as a binary tree-indexed family of i.i.d. mean one exponential random
variables, and (b) a corresponding branching random walk in Fourier frequency
space.

The LJS-cascade for Burgers leads to the introduction of new related proba-
bility models in the forms of a mean-field Burgers model, a β-field Burgers model,
and an α-delayed Yule process given in the next two sections. A key feature of
the LJS-cascade in general is a certain conservation of spatial Fourier frequen-
cies in the corresponding branching random walk. This conservation property
persists spatially in the mean-field Burgers model, for which β = 1

2 , however is
not reflected in the other β-field models. A two-parameter generalization would
accommodate the conservation property, however it will not be considered in the
present paper beyond a few remarks.

The class of β-field Burgers models conserves temporal frequencies in the
case β = 1

2 . Due to the difference in scaling of spatial frequencies of a branching
random walk and the corresponding scaling of times between movements, one
is thus naturally led to a companion purely temporal α-delayed Yule process
whose connection to the β-field models can be explicitly expressed via associated
Markov semigroups. Temporal frequency conservation is significant among the
α-delayed Yule processes and led to the recent discovery that the Poisson process
may be realized as an α-delayed Yule process when α = 1

2 , [14]. From a purely
probabilistic perspective, this and related results in [14] may be viewed as a
variant on an old discovery in [36] identifying the Poisson process as a random
time change of a Yule process. It is also noteworthy that α = 1

2 is a critical
value for the α-delayed Yule processes when viewed in terms of boundedness of
their infinitesimal generators if and only if α ≤ 1

2 . In particular this includes
α = β2 = 1

4 of the mean-field cascade.
Following the brief introduction of these various models, we conclude the

paper with a capstone section devoted to the analysis of the four leading ques-
tions that prompted their consideration: existence/uniqueness, well-posedness,
regularity, and self-similarity. Although the probabilistic framework is very close
to familiar classic models, the perturbations to existing theory provide interest-
ing new challenges for the resolution of these problems.

2 A Brief Highlight of Probabilistic Approaches to
Navier–Stokes Equations and the LJS-Cascade

Let us first agree on the signs and normalizations in the Fourier transform to
be used throughout. Namely, for integrable functions and/or tempered distribu-
tions, suitably interpreted,
2 The mean-field models for the Navier–Stokes equation, on the other hand, involve

parameters β > 1 as well; see [15] in this regard.
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f̂(ξ) = (2π)− n
2

∫

Rn

e−iξ·xf(x)dx, ξ ∈ R
n.

Two noteworthy observations about (1) can be made in terms of Fourier
transforms, denoted by ∧:

∇ · v = 0 corresponds to ξ · v̂ = 0

and
∇p corresponds to p̂ξ.

As a result of incompressibility, the pressure term p̂(ξ, t) may be removed
while retaining the velocity v̂(ξ, t) by a Leray projection of the (Fourier trans-
formed) Eq. (1) in the direction orthogonal to ξ. As a result of this, the Fourier
transformation of multiplication to convolution, and the multiplier effect of the
Fourier transform of the Laplacian term, the LJS-cascade emerges naturally as
a natural stochastic structure associated with the integrated equations, i.e., a
mild form of (1). This formulation was generalized in [4], and also developed in
[6,52] from a perspective of harmonic analysis.

Remark 1. The modification (i) of the original LJS-cascade noted above essen-
tially involves the representation of the forcing term. Specifically, in the original
LJS-cascade, the unforced equations would be viewed as equations forced by
zero, whereas we elect to view the lack of forcing as simply ignorable. This latter
view leads to considerations of explosive branching that are not an issue for the
original formulation in [37], since a finite explosion time3 means that there will
be infinitely many branchings within a finite time.

To recover p from the projected velocity one notes that, again owing to the
incompressibility condition, the divergence of the linear terms in (1) is zero.
Thus, taking the divergence followed by the Fourier transform, one arrives at

p̂(ξ, ·) =
∑

j,k

R̂j v̂j(ξ, ·)R̂kv̂k(ξ, ·),

where R̂jf(ξ) = − ξj

|ξ| f̂(ξ) is the Fourier symbol expresses the j-th Riesz trans-
form Rj convolved with f . In particular,

p =
∑

j,k

RjRk(vjvk).

The Gundy–Varapoulos–Silverstein probabilistic representation of Riesz
transforms in terms of Brownian motion from infinity is noteworthy in this con-
text. Although originally formulated on a measure space of infinite measure, the
construction has been modified in [3] to a measure space with total probability

3 An unfortunate typo occurs in the Appendix to [13] in which the explosion event
should be denoted [ζ < ∞], not [ζ = ∞].
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one. To appreciate the role of incompressibility from a probabilistic perspective,
one may consider the linearized Stokes problem

∂v

∂t
= Δv, ∇ · v = 0, x ∈ R

3, t > 0.

with arbitrary, not necessarily incompressible, initial data v0. In [54] the funda-
mental solution is explicitly computed as

v(x, t) =
∫

R3
Γ(x − z, t)v0(z)dz,

where the semigroup Γ = [I3×3 + R](K), for the 3 × 3 identity matrix I3×3,
matrix of Riesz transforms R = ((RjRk)), and Gaussian transition kernel K
for standard Brownian motion. Of course if v0 is incompressible then the usual
representation of solutions to the heat equation in terms of Brownian motion is
recovered. A stochastic calculus that would capture the effect of incompressibility
on Brownian motion remains an intriguing challenge.

Recently an alternative probabilistic approach to Navier–Stokes was devel-
oped by Constantin and Iyer; [11,33,34]. Their idea is to use a Weber formula
to express the velocity of the inviscid equation in terms of the particle paths,
being careful to avoid derivatives in time of the particle paths. For given peri-
odic, incompressible, 2 + δ-Hölder continuous initial data v0 this leads to an
equivalent system for the inviscid equations Navier–Stokes equations, i.e., Euler
equations, of the form

Ẋ = v

A = X−1

v = P
[
(∇trA)(v0 ◦ A)

]

X(a, 0) = a,

(2)

where P represents the Leray projection onto divergence free vector fields noted
earlier, ∇tr is the transpose to the Jacobian, and At is the spatial inverse map
At(X(t, a)) = a, a ∈ R

k(k = 2, 3). The key idea for the Constantin–Iyer formula-
tion is reflected in their result that, upon replacing the dynamics for the particle
trajectories X in (2) by a stochastic differential equation dX = v dt +

√
2ν dW ,

the velocity field v = EP
[
(∇trA)(u0 ◦ A)

]
is a fixed point of this modified sys-

tem if and only if v solves (1). In particular, if ν = 0 then this is the system (2)
for Euler equations. A noteworthy feature of this stochastic framework is that
it accommodates domains with boundary conditions beyond periodic [12], while
the LJS-cascade theory is restricted to free space and/or periodic boundary con-
ditions by virtue of the Fourier transform.

Earlier probabilistic approaches to (1) were introduced in terms of the corre-
sponding vorticity (curl of velocity) equation in [10]; see [25] for a rigorous treat-
ment. Finally, ergodic theory has also provided a natural framework in which (1)
can be viewed as an infinite dimensional dynamical system; [20–22,27,41,50,55].
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Given the overall strengths and weaknesses of various probabilistic
approaches to (1), we wish to mention that some practical utility has been
demonstrated with the LJS-cascade for computing a convergence rate in a related
context of the LANS-α (Lagrange Averaged Navier–Stokes) equations for fluids;
a problem posed in [40]. These are essentially the Navier–Stokes equations on
a torus except that the spatial scales that are in some sense “smaller than α”
are strategically filtered for computational purposes at high Reynolds number.
Denoting the solution to LANS-α by v(α), the LJS-cascade may be used to show
in suitable function spaces that for T > 0,

∫ T

0

||v(α)(·, t) − v(0)(·, t)||L2(T)dt ≤ A(T )α,

for a suitable constant A(T ) > 0; see [9]. To our knowledge the LJS-cascade
has been the only approach to yield a rate in three dimensions, however [7]
has subsequently been successful on the two-dimensional problem using more
standard pde methods and estimates. In addition to this, the use of LJS-cascades
as a numerical Monte Carlo tool has been tested on Burgers equation in [48].

3 Complex Burgers and the LJS-Cascade

The (unforced) viscous Burgers equation is given in free space by

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2

v(x, 0) = v0(x)
(3)

where v(x, t) represents the 1-dimensional velocity at time t ≥ 0 at position
x ∈ R, v0(x) represents the initial velocity, and ν > 0 is the viscosity parameter.

The equation above has the following natural symmetry:

If v(t, x) is a solution to Burgers equation, then vλ(t, x) := λv(λ2t, λx),
for λ > 0, is also a solution corresponding to the initial velocity (v0)λ =
λv0(λx).

The quantities that are invariant under the above scaling are called scaling-
critical or self-similar. In particular, a solution to (3) is called self-similar if
v(t, x) = vλ(t, x) for all t and x. Of course a self-similar solution would arise
from a self-similar initial data v0 = (v0)λ, and therefore self-similar solutions
must be viewed in a function space setting that accommodates this scaling. In
Fourier terms this may be expressed in integrated (mild) form as

v̂(ξ, t) = v̂0(ξ)e−νξ2t +
i

2
√

2π
ξ

t∫

0

e−νξ2(t−s)

∞∫

−∞
v̂(ξ − y, s)v̂(y, s) dy ds. (4)
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The scaling-symmetry can thusly be expressed in Fourier terms as:

If v̂(ξ, t) is a solution to (4), v̂λ(ξ, t) := v̂(ξ/λ, λ2t), for λ > 0, is also a
solution corresponding to the initial velocity (v̂0)λ = v̂0(ξ/λ).

Consequently self-similar solutions in Fourier space satisfy v̂(ξ, t) = v̂λ(ξ, t) =
v̂(ξ/λ, λ2t). In particular this means that self-similar initial data must be piece-
wise constant functions of the form:

v̂0(ξ) =
{

c1, ξ > 0;
c2, ξ < 0 .

(5)

This means that in order to accommodate the self-similar case, one must consider
settings that include initial data in L∞ in Fourier space.

For the LJS-cascade we seek to represent the mild formulation (4) in terms
of expected values of products of initial data along paths of an evolving ran-
dom binary tree. The exponential density in t is evident, and the space integral
naturally occurs as an expected value under the above-mentioned idea of self-
similarity if we set v̂0(ξ) = 0 for ξ < 0 (c2 = 0 in (5)). For then v̂(ξ, t) = 0 for
all ξ < 0 and t > 0, and the mild formulation (4) becomes

v̂(ξ, t) = v̂0(ξ)e−νξ2t

+
i

2
√

2πν

∫ t

0

νξ2e−νξ2τ 1
ξ

∫ ξ

0

v̂(η, t − τ)v̂(ξ − η, t − τ)dηdτ, ξ > 0, t ≥ 0.

(6)

Note that the convolution integral in the above formulation is an integral with
respect to a probability distribution concentrated on {(η1, η2) ∈ (0, ξ) × (0, ξ) :
η1+η2 = ξ} having uniformly distributed marginals on (0, ξ), respectively. These
can, in turn, be rescaled in terms of uniform distributions on (0, 1). The linear
relation between Fourier frequencies (or wave numbers) is referred to as (spatial)
conservation of frequencies. Of course the implied asymmetry of the Fourier
transform necessitates consideration of complex-valued solutions v.

The natural function space settings that is associated with (6) is that of a
Hardy-type space

H∞ = {v ∈ D′(R : C) : v̂(ξ) = 0 for ξ < 0, v̂ ∈ L∞([0,∞),C))}

Also, we set
‖v‖H∞ = inf{M ≥ 0 : |v̂(ξ)| ≤ M a.e. ξ > 0}

Remark 2. In fact, one can show that the real self-similar solutions to (3) must
be of the form

v(x, t) =
{

c1
x , x > 0;
c2
x , x < 0 .

where c1, c2 ∈ {0,−2}. Therefore, to obtain a nontrivial LJS-cascade theory that
includes the self-similar case, one must consider complex-valued solutions v.
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Note that upon rescaling ξ by 1√
ν
ξ and multiplying the equation by i

2
√
2πν

;
i.e., a dilation-rotation in the complex plane, the factor i

2
√
2πν

of the integral
term is removed and ν = 1 in (6) so transformed. Therefore, to simplify the
notation we will adopt the following convention for the rest of the paper.

Convention 1. From here out, unless otherwise stated, we rescale and assume
the convention for a rotation-dilation of the complex plane to both render ν = 1,
and to remove the factor i

2
√
2πν

. For notational simplicity, we continue to denote
the transformed function by v̂.

Using this Convention, (6) becomes

v̂(ξ, t) = v̂0(ξ)e−ξ2t+
∫ t

0

ξ2e−ξ2τ 1
ξ

∫ ξ

0

v̂(η, t−τ)v̂(ξ−η, t−τ)dηdτ, ξ > 0, t ≥ 0.

(7)
This is the mild formulation of the Fourier transformed complex Burgers equa-
tion that will be of main focus in this paper. In addition, related “mean field”
equations will also be introduced in due course.

The LJS-cascade corresponding to (7), to be referred to as the Burgers cas-
cade, consists of (i) a Yule process

Y = {Ts : s ∈ T = ∪∞
n=0{1, 2}n}

defined by a collection of i.i.d. mean one exponentially distributed random vari-
ables Ts indexed by vertices s of the full binary tree T = ∪∞

m=0{1, 2}m, {1, 2}0 =
{θ}; (ii) a multiplicative branching random walk starting from ξ = 0, recursively
defined by

Wθ(ξ) = ξ, Ws(ξ) = UsWs|m−1(ξ), s ∈ T, |s| = m ≥ 1,

where {(Us1, Us2) : s ∈ T} is a collection of i.i.d. random vectors, independent
of Y , having uniformly distributed marginals on (0, 1), and satisfying the con-
servation of frequency constraint

Us1 + Us2 = 1, s ∈ T.

Here we use |θ| = 0, |s| = |(s1, . . . , sn)| = n to denote the generation of s ∈ T,
and for |s| ≥ n, s|0 = θ, s|j = (s1, . . . , sj), j ≥ 1, denotes s ∈ T restricted to the
first j generations. In the special case ξ = 1 we will simply write W in place of
W (1).

The following stochastic processes defining the cascade genealogy are conve-
nient for the analysis of the Burgers cascade.

Definition 1. The genealogy of the complex Burgers cascade is the set-valued
branching stochastic process

Vunif(ξ, t) ≡ {s ∈ T :
|s|−1∑

j=0

W−2
s|j Ts|j ≤ ξ2t <

|s|∑

j=0

W−2
s|j Ts|j} ∈ E ,
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where E is the space of evolutionary sets V ⊂ T inductively defined by V = {θ}
and, for #V ≥ 2, V = W\s ∪ {s1, s2} for some W ∈ E ,#W = #V − 1, s ∈ W ,
where #A denotes the cardinality of a set A. The number of cascade leaves at
time t is denoted

Nunif(ξ, t) = #Vunif(ξ, t), t ≥ 0, ξ > 0.

The (stochastic) explosion time for the complex Burgers cascade is the non-
negative extended real-valued random variable

ζ = lim
n→∞ min

|s|=n

n∑

j=1

W−2
s|j Ts|j .

The event that explosion occurs is defined by [ζ < ∞].

Note that the state space E of evolutionary sets is a denumerable set, and
Vunif(ξ, t) may be viewed as a random binary subtree of T rooted at θ.

Remark 3. This is essentially the LJS-cascade modified for the absence of forcing
and applied to Burgers equation. If the explosion time is finite then the number of
branchings within a finite time horizon will be infinite. In such cases the recursive
definition below (8) of the cascade must also be modified. In the case of (1), one
makes the orthogonal projection noted earlier to remove the pressure term prior
to taking Fourier transforms. The convolution term remains as an integral over
R

3 with a variety of normalizations (majorizations) available, see [4,37], to obtain
an integral with respect to a probability distribution of conserved wave number
pairs. This latter flexibility provides alternative function spaces for solutions.
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Based on the LJS-cascade described above, a “stochastic solution” may be
expressed iteratively as:

X(ξ, t) =
∏

s∈Vunif(ξ,t)

v̂0(Ws(ξ))

=
{

v̂0(ξ), Tθ ≥ t
X(1)(W1(ξ), t − Tθ)X(2)(W2(ξ)), t − Tθ), Tθ < t,

(8)

where X(1),X(2) are independent copies of X.
The LJS-cascade solution to (7) is obtained from the stochastic solution (8)

via
v̂(ξ, t) = EX(ξ, t) = E

∏

s∈Vunif

v̂0(Ws). (9)

Clearly, if the expected value above is well-defined, then the LJS-cascade solution
(9) solves (7).

In Sect. 6 we will consider the existence of the expected value in (9) as well
as the following basic questions driving the problems, conjectures and partial
results pertaining to (7) and related models.

(Q1) Existence/Uniqueness of Mild Solutions: A probabilistic rendering
of (7) naturally suggests analysis in a Hardy-type space H∞. The questions
of existence and uniqueness may be analyzed globally in time for a subset of
initial data, or locally in time for all initial data.

(Q2) Global Well-Posedness (frequency asymptotic): This question per-
tains to the identification of linear subspaces of H∞ for which mild solutions
exist for all time and remain in the subspace. Regularity and/or self-similarity
considerations, i.e., Q3, Q4, may impose specific conditions on solution spaces
for Q1 and Q2.

(Q3) Regularity: The positive form of this question involves the C∞ behavior
of solutions for all time for smooth (Schwarz space) initial data. This question
includes finite time unbounded growth of the Fourier transform.

(Q4) Self-Similarity: The positive form of this question involves the uniqueness
of solutions under conditions of unique space/time scale-invariant solutions.
The absence of such uniqueness defines a notion of symmetry breaking. The
solution space is naturally required to contain constants since these provide
self-similar solutions.

We will see that (Q1) can be answered in the affirmative. In particular, for
Burgers equation and the related LJS-cascade we will prove the following basic
result (see Theorem 2).

Theorem 1. For ξ = 0, with probability one

– No Stochastic Explosion: ζ = ∞.
– ∞-Radius of Convergence: sup{r ≥ 1 : ErN(ξ,t) < ∞} = ∞, t ≥ 0.
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Moreover, for v0 ∈ H∞

v̂(ξ, t) = E

∏

s∈Vunif(ξ,t)

v̂0(Ws(ξ)), ξ > 0, t ≥ 0,

is the unique mild solution to (7).

On the other hand (Q2) and (Q3) are delicate even in this substantially
reduced framework of complex Burgers. Their resolution can take interesting
twists and turns, suggesting still further questions about the nature of quasilinear
equations and their companion delayed branching random walks.

4 Mean-Field Burgers and β-field Burgers

The mean-field Burgers model is defined under Convention 1 by replacing U by
the constant β = EU = 1

2 in the LJS-cascade for complex Burgers (7) defined
in the previous section. More generally, the β-field Burgers model is defined
by replacing U by a specified constant β ∈ [0, 1] for spatial frequencies, i.e.,
Ws(ξ) = β|s|ξ defines the (multiplicative) branching random walk. As a result
Ws(ξ)2 is replaced by Ws(ξ)2 = β2|s|ξ2, β ∈ [0, 1], s ∈ T, when scaling the
temporal frequencies. To keep the notation simple, we let the context indicate
the meaning of W , continuing to suppress ξ when ξ = 1. Now define

Vβ(ξ, t) = {s ∈ T :
|s|−1∑

j=0

β−2jTs|j ≤ ξ2t <

|s|−1∑

j=0

β−2jTs|j}, t ≥ 0.

Then the explosion time is accordingly replaced by

ζβ = lim
n→∞ min

|s|=n

n∑

j=0

β−2jTs|j .

The mean-field Burgers cascade is the β-field Burgers cascade with β =
1/2. Observe that the β-field Burgers cascade has the associated mild equation
obtained by replacing the uniform distribution by the Dirac distribution δ{β}:

v̂(ξ, t) = v̂0(ξ)e−ξ2t +
∫ t

0

ξ2e−ξ2τ v̂2(βξ, t − τ)dτ, ξ = 0, t ≥ 0. (10)

The corresponding pde associated with the mild β-field cascade is given by

∂v̂(ξ, t)
∂t

= −ξ2v̂(ξ, t) + ξ2v̂2(βξ, t), t > 0, v̂(ξ, 0) = v̂0(ξ). (11)

Remark 4. Although it will not be considered beyond the mean-field Burgers cas-
cade in this paper, it is also natural to consider a two-parameter mixed (β1, β2)-
field cascade where 0 ≤ β1, β2, corresponding to the equation

v̂(ξ, t) = v̂0(ξ)e−ξ2t +
∫ t

0

ξ2e−ξ2τ v̂(β1ξ, t − τ)v̂(β2ξ, t − τ)dτ, ξ = 0, t ≥ 0.
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In cases of the two extremes β = 0 and β = 1, one has the following explicit
solutions:

β = 0 : v̂(ξ, t) = e−ξ2tv̂0(ξ) + (1 − e−ξ2t)v̂2
0(0), t ≥ 0,

and, noting for the Yule process that N1 = #V1(ξ, t) has a geometric distribution
with parameter pt = e−ξ2t, or simply solving (11) in the case β = 1,

β = 1 : v̂(ξ, t) ≡ Ev̂0(ξ)#V1(ξ,t)−1

=
v̂0(ξ)e−ξ2t

1 − v̂0(ξ) + v̂0(ξ)e−ξ2t
, 0 ≤ t < t∞(v̂0(ξ)),

respectively, where

t∞(v̂0(ξ)) =

{
1
ξ2 ln

(
v̂0(ξ)

v̂0(ξ)−1

)
, for v̂0(ξ) > 1

∞, for − ∞ < v̂0(ξ) ≤ 1.

In particular, while the solution in the case β = 0 preserves the structure of
the initial data over all time, in the case β = 1 there is finite-time blow-up for
any initial data with v̂0(ξ) > 1. In fact, if v̂0(ξ) = M > 1, ξ > 0 is constant
then v̂ instantaneously exits H∞, i.e., infξ>0 t∞(v̂0(ξ)) = 0, making the problem
ill-posed in H∞. Even if v̂ = M1[a,b],M > 1, is compactly supported on 0 < a <
b < ∞, there is finite time blow-up at

t∞(v̂0) = inf
ξ>0

t∞(v̂0(ξ)) = b−2 ln M

ln(M − 1)
.

The mean field value β = 1
2 is of particular interest, but as shown in the next

section, the parameter β = 1√
2

also results in distinguished structure.

5 α-Delayed Yule Process

The α-delayed Yule process is defined by the β-field Burgers cascade under
Convention 1 with α = β2, ξ = 1. With this reduction in parameters, for α ∈
(0, 1], the α-delayed Yule process is simply denoted

V (α)(t) = Vβ(ξ, t), (β =
√

α, ξ = 1), t ≥ 0. (12)

The mean-field model corresponds to α = 1
4 < 1

2 . The Yule process is then
obtained in this context when α = 1 > 1

2 . The parameter value α = 1
2 may be

viewed as a critical value of the β-field evolutions as explained below. Moreover,
as also shown in [14] the 1

2 -delayed Yule process is the (shifted) Poisson process
with unit intensity; in fact, this extends to a two-parameter delayed Yule process
provided α1 + α2 = 1.

Give E the discrete topology and let C0(E) denote the space of (continuous)
real-valued functions f : E → R that vanish at infinity; i.e., given ε > 0, one has



Complex Burgers Equation: A Probabilistic Perspective 151

|f(V )| < ε for all but finitely many V ∈ E , with the uniform norm || · ||u. The
subspace C00(E) ⊂ C0(E) of functions with compact (finite) support is clearly
dense in C0(E) for the uniform norm.

Since for each 0 < α ≤ 1, (12) defines a Markov process4 V (α), one has cor-
responding semigroups of positive linear contractions {T

(α)
t : t ≥ 0} defined by

T
(α)
t f(V ) = EV f(V (α)(t)), t ≥ 0, f ∈ C0(E), (13)

with the usual branching process convention that given V (α)(0) = V ∈ E , V (α)(t)
is the union of those progeny at time t independently produced by single pro-
genitors at each node s ∈ V .

The connection with the β-field model under Convention 1 and for suitable
v̂0 may be expressed in terms of the semigroups as

v̂(ξ, t) = T
(β2)
β2t ϕ(v̂0, ξ, β; ·)(∅),

where, for real v̂0 and Convention 1, ϕ(v̂0, ξ, β; ·) : E → R is given by

ϕ(v̂0, ξ, β;V ) =
∏

s∈V

v̂0(|s|βξ), V ∈ E .

The usual considerations imply that the infinitesimal generator (A(α),Dα) of
V (α) is given on C00(E) via

A(α)f(V ) =
∑

s∈V

α|s|{f(V s) − f(V )}, f ∈ C00(E),

where
V s = V \{s} ∪ {< s1, s2 >}, s ∈ V.

Proposition 2. The space C00(E) of continuous functions on E having compact
(finite) support is a core for the generator of the semigroup defined by (13). In
particular one has

∂

∂t
T

(α)
t f(V ) = A(α)T

(α)
t f(V ) = T

(α)
t A(α)f(V ), t > 0, f ∈ Dα ⊃ C00(E).

Proof. Note that f ∈ C00(E) if and only if there are W1, . . . ,Wm in E , and real
numbers f1, . . . , fm such that f =

∑m
j=1 fjδ{Wj}. Thus, if #V > #W , then

T
(α)
t f(V ) =

m∑

j=1

fjP (V (α)(t) = Wj |V (α)(0) = V ) = 0.

In particular, T
(α)
t f ∈ C00(E). Since C00(E) is dense in C0(E), the assertion

follows from standard semigroup theory. ��
4 Another closely related Markov evolution that takes place in the sequence space �1

is given in [14].
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The following result from [14] displays a distinct role of α = 1
2 as a critical

parameter in terms of boundedness of the infinitesimal generators.

Proposition 3. (A(α),Dα), Dα ⊂ C0(E) is a bounded linear operator if and
only if α ≤ 1

2 . In particular, the infinitesimal generator is a bounded operator
for the mean-field parameter α = 1

4 .

Other interesting values of α ∈ (0, 1) arise by consideration of

m(α)(t) = EN (α)(t).

Proposition 4. For 0 < α ≤ 1,

EN (α)(t) = 1 +
∞∑

n=1

n−1∏

j=0

(2αj − 1)
tn

n!
, t ≥ 0.

In particular, t → EN (α)(t) is a polynomial in t of degree k for any α that is a
k-th root of 1

2 for some k = 1, 2, . . . .

Proof. One may readily observe, e.g, by conditioning on Tθ, that

dm(α)

dt
= −m(α)(t) + 2m(α)(αt), m(α)(0) = 1.

From here one may either derive the asserted formula by series expansion, or
check the assertion directly. The polynomial solutions are made obvious by
inspection. ��
Remark 5. The positive functions

aβ(V ) =
∑

s∈V

β|s|, V ∈ E ,

provide a class of genealogical gauges on evolutionary sets. In particular, under
the convention 00 = 1, a0(V ) = δ{θ}(V ), and a1(V ) = #V, V ∈ E . Although
aβ /∈ C0(E) for any β ∈ (0, 1], the following formal calculation for α ∈ (0, 1],

A(α)aβ(V ) = (2β − 1)aαβ(V ), V ∈ E ,

leads to a class of positive martingales associated with the Yule process given by

M(t) = e(2β−1)taβ(V (1)(t)), t ≥ 0,

which is shown in [14] to be uniformly integrable if and only if β < βc, where
βc ≈ 0.1867 is the unique solution in (0, 1] to

βc ln βc = βc − 1.

The associated semigroup equations become available by the following. Define a
sequence a

(n)
β ∈ C00(E) by restricting the positive support of aβ to E(n) = {V ∈

E : #V ≤ n}, for n = 1, 2 . . . , respectively. Then, one has E = ∪∞
n=1E(n), E(1) ⊂

E(2) ⊂ · · · , and

A(α)a
(n)
β (V ) = (2β − 1)aαβ(V ), V ∈ E(n−1), n = 2, 3, . . . .
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6 Basic Problems for Complex Burgers and Mean-Field
Burgers: Some Results and Conjectures

We will start with several general results about probabilistic properties of LJS-
cascades for Burgers and β-field Burgers equations. In the subsequent subsections
we will use these results to analyze well-posedness and regularity issues for the
solutions to the corresponding PDE.

As a matter of notation, the evolutionary sets V•(ξ, t) as well as generic
functionals, e.g, N•(ξ, t), will be denoted without specific subscripts: i.e., V will
be used for either Vunif or Vβ and similarly, N(ξ, t) = #V (ξ, t) will stand for
either Nunif or Nβ , as dictated by context.

First, we note that the tree structures of the corresponding LJS-cascades
are independent on the initial data in (7) or (10), and thus must preserve the
scaling-invariance (ξ, t) → (λ−1ξ, λ2t). As a result, the following self-similarity
and monotonicity properties are straightforward to prove and are useful in some
of the general analysis:

Self − Similarity :
V (λ−1ξ, λ2t) = V (ξ, t) ≡ V (τ)
N(λ−1ξ, λ2t) = N(ξ, t) ≡ N(τ) λ > 0, τ = ξ2t.

Definition 2. For evolutionary sets W,V ∈ E we say V precedes W , denoted
V ≺ W , if each s ∈ V has a (possibly empty) concatenation belonging to W ,
i.e., for each s ∈ V either s ∈ W or there is an s ∈ {1, 2}m, for some m ≥ 1,
such that s ∗ s ∈ W , where ∗ denotes concatenation.

It is straightforward to check that

V (α1)(t) ≺ V (α2)(t), 0 < α2 ≤ α1 ≤ 1, ξ, t ≥ 0.

V(β1)(ξ, t) ≺ V(β2)(ξ, t), 0 < β2 ≤ β1 ≤ 1, ξ, t > 0.

V (τ1) ≺ V (τ2), 0 < τ1 < τ2.

As a consequence one has the following.

Proposition 5. For a fixed τ > 0, the following functionals are increasing in
α = β2.

Nβ = H(α)(τ) = #Vβ(τ) and Hβ(τ) = H(α)(τ) = max
s∈V (α)(τ)

|s|−1∑

j=0

(
1
α

)jTs|j ,

The next property, specifically the non-explosion of the LJS-cascades, is cru-
cial for the analysis in the subsections to follow. The non-explosion becomes
obvious if we compare Burgers and β-field cascades to the Yule process.
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Proposition 6. Let τ = ξ2t, β ∈ [0, 1]. Then

P (Nβ(τ) < ∞) = P (Nunif(τ) < ∞) = 1 ,

and consequently, Burgers and β-Burgers cascades are non-exploding.

Proof. First, we note that P (N1(τ) < ∞) = 1 for the Yule process, (α = β = 1)
since, as is well-known and easily checked, N1(τ) is distributed geometrically:
P (N1(τ) = n) = e−τ (1 − e−τ )n−1, and therefore,

P (N1(τ < ∞) =
∞∑

n=1

P (N1(τ) = n) = 1.

Now observe that since for Burgers and β-field trees, Ws(ξ) ≤ ξ, Nunif(τ) ≤
N1(τ) and Nβ ≤ N1(τ) a.s., and so P (Nunif(τ) < ∞) = P (Nβ(τ) < ∞) = 1.
The non-explosion immediately follows. ��

The following estimate on the distribution of N will be used in Subsect. 6.1
to establish finiteness of the expected value (9).

Proposition 7. Let τ = ξ2t and denote Pk(τ) := P (Nunif(τ) = k), we have

Pk(τ) ≤ e−τ/k τk−1

(k − 1)!
, k ∈ N . (14)

Proof. The estimate (14) is proved by induction. For n = 1 we have P1(τ) =
P (Tθ < t) = e−τ . Assume (14) holds for k ≤ n. Then, conditioning on the first
branching,

Pn+1(τ) =

t∫

0

ξ2e−ξ2s 1
ξ

ξ∫

0

n∑

k=1

Pk(y2t − s)Pn+1−k((ξ − y)2(t − s)) dy ds

= e−τ

τ∫

0

eσ

1∫

0

n∑

k=1

Pk(η2σ)Pn+1−k((1 − η)2σ) dη dσ

≤ e−τ

τ∫

0

eσ

1∫

0

n−1∑

j=0

e
−

(
η2

k + 1−η2

n−k

)
σ (η2σ)k−1

(k − 1)!
((1 − η)2σ)n−k

(n − k)!
dη dσ.

We will use the following lemma.

Lemma 1. For any η ∈ [0, 1], n ∈ N, and k ∈ {1, . . . n}, one has:

1
n + 1

≤ η2

k
+

(1 − η)2

n + 1 − k

(

≤ max
{

1
k

,
1

n + 1 − k

})

(15)

Proof. The lemma follows by considering the extrema of the function φ(η) =
η2

k + (1−η)2

n+1−k on η ∈ [0, 1]. ��
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Using (15) we obtain

Pn+1(τ) ≤ e−τ

τ∫

0

e
n

n+1σ 1
(n − 1)!

1∫

0

n−1∑

j=0

(n − 1)!
j!(n − 1 − j)!

× (η2σ)j((1 − η)2σ)n−1−j dη dσ

=
e−τ

(n − 1)!

τ∫

0

e
n

n+1σ

1∫

0

(
(η2 + (1 − η)2)σ

)n−1
dη dσ

≤ e−τ

(n − 1)!

(
n + 1

n

)n
τ∫

0

e
n

n+1σ

(
n

n + 1
σ

)n−1

d

(
n

n + 1
σ

)

,

where we used η2 + (1 − η)2 ≤ 1 on η ∈ [0, 1].
To further estimate the integral above we note that by the mean value

theorem,
x∫

0

eyyn−1 dy ≤ xn

n
ex (16)

for x ≥ 0 and n ∈ N.
Thus, using the (16) with y = n

n+1σ, we obtain:

Pn+1(τ) ≤ e−τ

(n − 1)!

(
n + 1

n

)n

(
n

n+1τ
)n

n
e

n
n+1 τ = e− τ

n+1
τn

n!
,

and so (14) holds for k = n + 1. ��
In the case β-field models one has the following bounds.

Proposition 8. Let τ = ξ2t and 0 < β2 = α ≤ 1 and denote P
(α)
k (τ) :=

P (Nβ(τ) = k). Then for k ≥ 2 we have:

P
(α)
k (τ) ≤ e−(2β2)k−2τ

2β2

(2β2τ)k−1

(k − 1)!
, α = β2 <

1
2
;

P
(1/2)
k (τ) = e−τ τk−1

(k − 1)!
, α = β2 =

1
2
. (17)

and

P
(α)
k (τ) ≤ e−τ

(
1 − e−(2β2−1)τ

)k−1

(2β2 − 1)k−1
, α = β2 >

1
2
; (18)

Proof. The statements can be proved by induction analogously to (14). Note
that in the β-field case, we have for α = β2

P
(α)
n+1(τ) = e−τ

τ∫

0

eσ
n∑

k=1

P
(α)
k (ασ)P (α)

n+1−k(ασ) dσ ,
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and so, for β = 1/
√

2 the exponentials inside the integral disappear, leading to
Poisson distribution (17).

In the case β2 ∈ (1/2, 1] we use bound (1 − e−(2β2−1)β2σ) ≤ (1 − e−(2β2−1)σ)
in the inductive step. ��
Remark 6. We note that by Proposition 5 the tails of Nβ become thinner as
β → 0.

The next result will be relevant to establish lack of well-posedness in
Hadamard sense.

Proposition 9. Let τ = ξ2t, β ∈ [0, 1]. Then, as τ → ∞

E rNunif (τ), E rNβ(τ) →
⎧
⎨

⎩

0, 0 ≤ r < 1
1, r = 1
∞ r > 1.

Proof. We note that the numbers of nodes N•(τ) ↗ ∞ as τ → ∞. Then the
assertion follows from the monotonicity in τ of the sequence rN•(τ) by applying
the monotone convergence theorem for r ≥ 1 and the dominated convergence
theorem for 0 ≤ r < 1. ��

For the analysis of regularity, it is important to obtain estimates on L(ξ, t),
and R(ξ, t) – left-most and right-most (delayed) branching random walkers. In
particular, the properties below will prove sufficient to capture initial data in
H∞ with compact support in ξ which will be analyzed in Subsect. 6.3.

Remark 7. A rather complete probabilistic analysis of branching random walks
associated with Yule processes (β = 1) has been evolving in the probability litera-
ture over the past several decades. The recent paper [49] is especially appropriate
to the present setting in its focus on the heights, fully saturated trees, and the
saturation height ; also see [1,5,8,17,26,28,35,46] for related results of various
types. However the corresponding problems for the Burgers cascade and/or the
β-field cascades involve temporal delays to the Yule structure that make the
analysis of the relevant functionals more challenging in cases other than β = 1.

In view of the results of the previous section on the α-delayed Yule process,
the case α = 1

2 , or β = 1√
2
, represents relatively tractable cases that will be

considered in some detail. Since the α-delayed Yule process, α = β2 contains the
essential stochastic structure for applications to the β-field equations, the focus
is on the former.

Recall that from (17) in the case α = 1
2 , N ( 1

2 )(τ) = #V ( 1
2 )(τ) is a (shifted)

Poisson process

P (N ( 1
2 )(τ) = k) =

τk−1

(k − 1)!
e−τ , k ≥ 1, τ = ξ2t.

Let
p(α)

n (τ) = P (N (α)(τ) = 2n, h(α)(τ) = n)
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denote the probability that an α = β2-tree originating at ξ is “fully saturated”
by time t, i.e., has exactly n full generations (and 2n branches); the saturated
tree height h is defined as the maximal generation of the tree in which all nodes
are present. Observe that for n ≥ 1 the two subtrees resulting from the first
branching must also be saturated with n − 1 full generations, and therefore we
have

p
(α)
0 (ξ2t) = e−ξ2t

p(α)
n (ξ2t) = ξ2

t∫

0

e−ξ2(t−s)
[
p
(α)
n−1(αξ2s)

]2
ds, n ≥ 1. (19)

The case α = 1/2 is amenable to exact calculations that will be useful in the
analysis of regularity of solutions of the β−field equation. The main result is

Proposition 10. For n ≥ 1, let

Qn =
n∏

j=1

(
1

1 − 1
2j

) 1
2j

. (20)

Then

p
( 1
2 )

n (ξ2t) = e−ξ2t

(
ξ2t

2n

)2n−1

Q2n

n (21)

Proof. The statement is clearly true for n = 1. Assuming it holds for n = k, we
have from (19)

p
(1/2)
k+1 (ξ2t) = ξ2

t∫

0

e−ξ2(t−s)
[
p
(1/2)
k (ξ2s/2)

]2
ds

= ξ2
∫ t

0

e−ξ2(t−s)

(

e−ξ2s/2

(
ξ2s/2

2k

)2k−1

Q2k

k

)2

ds

= e−ξ2tQ2k+1

k

(
1

2k+1

)2k+1−2 ∫ ξ2t

0

u2k+1−2du

= e−ξ2t

(
1

2k+1

)2k+1−2

(ξ2t)2
k+1−1 1

2k+1 − 1
Q2k+1

k

= e−ξ2t

(
ξ2t

2k+1

)2k+1−1 1
1 − 1

2k+1

Q2k+1

k

which is the statement for n = k + 1. ��
Remark 8. In the context of binary tree searching, the constant Q =

∏∞
j=1(1 −

1/2j) is introduced.
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Since 1 < Qn < 1/Q, and Qn is increasing in n, Q∗ = limn→∞ Qn is well
defined. Furthermore, according to WolframAlpha [57],

Q∗ =
∞∏

k=1

(
1

1 − 1
2k

) 1
2k

≈ 1.55354. (22)

6.1 Existence/Uniqueness of Mild Solutions

In this section we will pose the following question for both complex Burgers and
β-field Burgers equations.

Remark 9. Within the rather large literature, e.g. [2,18,23,29–32,51,53], on
uniqueness/non-uniqueness to certain parabolic semi-linear equations associated
with Markov branching processes, the explosion time distribution (and its com-
plement) are known to play a key role in demonstrating non-uniqueness for initial
data 0 (or 1, respectively). While the quasi-linear Burgers equation, and Navier–
Stokes equations naturally involve semi-Markov branching processes in defining
their genealogy, the consequences of explosion, or its absence, are not obvious
for general initial data. Even in the case of the mean-field models, where the
genealogy is a Markov branching process, the issues for general initial data are
diverse; see [15].

Existence/Uniqueness in H∞: Does (3) and (11) have unique global in time
mild solution for any v0 ∈ H∞?

We will give the detailed proofs for the case of Burgers equation, following
Convention 1. The corresponding proofs for β-field equations generally proceed
similarly, and we will provide indications whenever necessary.

Existence of the solution to (7) and (10) hinges on finiteness of the expected
value in (9), while the uniqueness is the consequence of the non-explosion prop-
erty of the LJS-cascades for (complex) Burgers equation.

Proposition 11. The expected value in (9) for the stochastic solution X defined
either on Burgers or β-field cascades for β ∈ [0, 1) is finite, provided v0(ξ) ∈ H∞.
Thus v̂(ξ, t) provided by (9) is a well-defined solution to (7) and (10) respectively.

Proof. Suppose ‖v0‖H∞ = M . Using (14) we can estimate.

EMN(τ) ≤ M

∞∑

k=0

(Mτ)k

k!
e− τ

(k+1) ≤ eMτ < ∞. (23)

Then |EX(ξ, t)| ≤ E|X(ξ, t)| ≤ EMNunif(ξ
2t) < ∞. The case of β-field Burgers

equation with β2 ≤ 1/2 is treated similarly.
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In the case β2 > 1/2 and M > 2β2 − 1, estimate (18) only gives local
existence:

EMNβ(τ) ≤ Me−τ
∞∑

k=0

(
M(1 − e−(2β2−1)τ )

2β2 − 1

)n−1

=
(2β2 − 1)Me−τ

(2β2 − 1) − M(1 − e−(2β2−1)τ )
.

Clearly, EMNβ(τ) < ∞ for τ ∈ [0, τ0], provided

τ0 <
1

2β2 − 1
ln
(

M

M − (2β2 − 1)

)

.

Let

C0 = C0(β, τ0) =
(2β2 − 1)

(2β2 − 1) − M(1 − e−(2β2−1)τ )
.

Clearly, since M > 2β2 − 1 we have C0 > 1.
Also note that w(τ) = EMNβ(τ) solves the self-similar form of the β-field

Burgers equation (27) with w0 = M on any interval containing zero where the
expectation is finite.

The key observation is that we can use induction to extend w(τ) to a solution
of (27), defined on the entire [0,∞). In fact any extension of the solution w(t)
extension will satisfy:

w(t) ≤ γnMe−τ =
(

2MC0

2β2 − 1

)2n

2β2 − 1
2

e−τ ,

for all τ ∈
[

τ0
(β2)n−1

,
τ0

(β2)n

]

, n ∈ N,

(24)

where γn is defined by the following recursion:

γ0 = C0, γn+1 =
2M

2β2 − 1
γ2

n, i.e, γn =
(

2M

2β2 − 1

)2n−1

C2n

0 .

Indeed, in the case n = 1, we already have w(t) ≤ C0Me−τ for τ ∈ [0, τ0].
Now, assuming (24) holds for k ≤ n, we have for σ ∈ [0, τ0/(β2)n+1], β2σ ∈
[0, τ0/(β2)n], and since γn is increasing, w(ασ) ≤ γnMe−β2σ. Thus, for τ ∈
[0, τ0/(β2)n+1]:

w(τ) = Me−τ + e−τ

τ∫

0

eσw2(β2σ) dσ ≤ Me−τ

⎛

⎝1 + Mγ2
n

τ∫

0

e−(2β2−1)σ dσ

⎞

⎠

≤
(

1 +
Mγ2

n

2β2 − 1

)

Me−τ ≤ 2M

2β2 − 1
γ2

nMe−τ = γn+1Me−τ .

Thus, (24) holds for all n.
As a consequence EMNβ(τ) does not blow up in finite “time” τ , and so for

β2 > 1/2, as in the other cases, EXβ(ξ, t) is a well-defined solution to (10). ��
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Remark 10. The proof of Proposition 11 yields the following bounds on the
growth rates for EMN•(τ), M > 1 as τ → ∞ (see Theorem 9), and consequently
on the solutions of the corresponding equations with ‖v0‖H∞ = M :

EMN•(τ) ≤ O
(
Mec•Mτ

)
,

for complex Burgers or β-field Burgers, β2 ∈ (0, 1/2), and

EMN•(τ) ≤ O

(

(c•M)τ
ln 2

ln(1/β2)

)

,

for β-field Burgers, β2 ∈ (1/2, 1), where c• is a constant that depends on the
model, complex or β-field Burgers.

The uniqueness follows from the “martingale method” of Le Jan and Sznit-
man. Here it also requires the added non-explosion property established in
Proposition 6. The proof is presented for sake of completeness.

Proposition 12. Let v(x, t) be the solution of (3) or (11) with β ∈ [0, 1) (equiv-
alently, v̂(ξ, t) is a solution of (7) or (10) ) with the initial data v0 ∈ H∞. Then
v̂ is is given by (9).

Proof. Without loss of generality, suppose v̂(ξ, t) - a solution to (7), and X be
the stochastic solution defined by (8). We aim to show v̂ = EX. For this purpose
we define recursively the following sequence: X0(ξ, t) = v̂(ξ, t); Given Xn(ξ, t),
define Xn+1 by

Xn+1(ξ, t) =
{

v̂0(ξ), Tθ ≥ t
Xn(W1(ξ), t − Tθ)Xn(W2(ξ), t − Tθ), Tθ < t.

More explicitly,

Xn =

⎛

⎜
⎜
⎝

∏

|s| < n
s ∈ Vunif

v0(Ws)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

∏

|s| = n
∃s̃ ∈ Vunif s = s̃|n

v(Ws|n, t −
n−1∑

j=0

Ts|j)

⎞

⎟
⎟
⎠ .

By induction, it follows that

E(Xn) = v̂, ∀n ∈ N.

Fix ξ, t > 0. Denote

M = max
{

max
0≤η≤ξ

{|v̂0(η)|}, max
0 ≤ η ≤ ξ,
0 ≤ s ≤ t

{|v̂(η, s)|}},

and let XM be defined as in (8) but with v̂0 replaced with M . Note that since
M < ∞, by Proposition 11, E(XM ) < ∞.

Now let
An = {s ∈ Vunif : |s| > n}.
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Then by the non-explosion, ⋂

n∈N

An = ∅,

and so by the dominated convergence theorem:

E(1An
) → 0, as n → ∞.

Observe that Xn|Ac
n

= X|Ac
n

and by the dominated convergence theorem,

E(2XM1An
) → 0 as n → ∞.

Therefore,
|E(Xn) − E(X)| ≤ E(2XM1An

) → 0 as n → ∞.

Thus, E(X) = v̂.
The β-field equation may be treated analogously. ��
We collect the results above in the following theorem.

Theorem 2. Consider either Burgers equation or β-field Burgers equation with
β ∈ [0, 1) together with corresponding LJS-cascades. Then, for ξ > 0, with prob-
ability one

– No Stochastic Explosion: ζ = ∞.
– ∞-Radius of Convergence: sup{r ≥ 1 : E rN•(ξ,t) < ∞} = ∞, t ≥ 0.

Moreover, for any v0(ξ) ∈ H∞

v̂(ξ, t) = EX(ξ, t), ξ > 0, t ≥ 0,

is the unique solution to (7) or (10).

Proof. The non-explosion is the consequence of Proposition 6, while existence
and uniqueness are established in Propositions 11 and 12. The infinite radius of
convergence for E rNunif (ξ,t) follows from (23) with M = r. ��

6.2 Global Well-Posedness Issues in H∞.

As far as behavior at infinity, we will ask the following well-posedness question.

Well-posedness in H∞: Suppose v0(x) ∈ H∞. If v denotes the solution to (3)
or (11), will v(x, t) ∈ H∞ for all t > 0 ?

It turns to that the answer is negative.
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Theorem 3. For either Burgers or β-field Burgers with β ∈ [0, 1) equations we
have:

1. (Lack of well-posedness in H∞) For any M > 1 there exist initial data v0
with ‖v0‖H∞ ≥ M , namely,

v̂0(ξ) ≥ M > 1, ∀ξ ≥ 0,

such that the corresponding solution v(ξ, t) of (7) satisfies

lim
ξ→∞

v̂(ξ, t) = ∞ ∀t > 0,

i.e., Burgers equation (3) and β-field Burgers equations (11) are not well-
posed in H∞ even locally in time.

2. (Well-posedness in H∞ for small initial data). If ‖v0‖H∞ ≤ 1, then for all
t > 0, the solution v(ξ, t) ∈ H∞, i.e. the corresponding equations are globally
well-posed in the unit ball of H∞.

Proof. The theorem follows immediately from Proposition 9 once we observe that
in the case v̂0(ξ) ≥ M > 1, |X(ξ, t)| ≥ MN•(ξ2t), while in the case ‖v0‖H∞ ≤ 1,
|X(ξ, t)| ≤ 1. ��
Remark 11. Note that for the self-similar initial data v̂0(ξ) = M > 1 the solution
v̂(ξ, t) = w(ξ2t) satisfies

lim
ξ→∞

v̂(ξ, t) = ∞ lim
t→∞ v̂(ξ, t) = ∞ .

Remark 12. For β = 1 the global existence and uniqueness holds if and only if
‖v0‖H∞ ≤ 1. When ‖v0‖H∞ > 1 the solutions in general do not exist even locally
in time. Therefore, the corresponding β-field model is automatically ill-posed.
Indeed, in this case β-field Burgers becomes

dv̂(ξ, t)
dt

= −ξ2v̂(ξ, t) + ξ2v̂2(ξ, t),

and so

v̂(ξ, t) =
v̂0(ξ)

v̂0(ξ) − e−ξ2t(v̂0(ξ) − 1)
.

Clearly, if, e.g. v̂0(ξ) ≥ c > 1, then for any t > 0, v̂(ξ, t) becomes infinite at a
certain ξ ∈ [0,∞).

As will be shown in the next subsection, there is evidence that the lack of
well-posedness in Theorem 3 for big initial data cannot be eliminated even if one
considers smaller subspaces of H∞. In fact, in the case β = 1/

√
2 there exist

mild solutions of (11) with compactly-supported (in Fourier space) initial data
that exit H∞ in finite time.
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6.3 Regularity

The analysis of regularity properties of the solution of the β-field model (10) can
also be approached using the probabilistic representation of solutions given by

v̂(ξ, t) = E

⎡

⎣
∏

s∈Vβ(ξ,t)

v̂0(β|s|ξ)

⎤

⎦

As already mentioned, for results pertaining to regularity of solutions, one may
wish to consider bounded initial data having compact support on the positive
half-line. For this let us consider

v̂0(ξ) = M1[a,b], 0 ≤ a < b < ∞.

The particular case of β = 1/
√

2 serves to illustrate the lack of regularity in
the solution of the corresponding β-field equation. Note that for the particular
case that v̂0(ξ) = M1[0,∞) the solution is given by

v̂(ξ, t) = exp((M − 1) ξ2t)

This simple example shows that if M < 1, the solution gains regularity, indi-
cated by an exponential decay in the Fourier domain but, that for M > 1, the
solution leaves H∞ instantly. This lack of well-posedness in the Hadamard sense
is reminiscent of the behavior of solutions of the backward heat equation that is
manifested also even in the case of initial data that is of compact support.

The precise statement of this result is as follows.

Proposition 13. Let v̂(ξ, t) be a solution of (10) with β = 1/
√

2 and initial
data v̂0(ξ) = M1[a,b]. Let Tl = 1/b2, Tu = 1/a2, and Q∗ be given in (22). Then,
if M > e/Q∗,

lim sup
ξ→∞

v̂(ξ, t) = ∞, for Tl < t < Tu.

Proof. The probabilistic representation of the solution of the β−field model pro-
vides a lower bound that is fundamental to establishing the result. Fix t ∈ [Tl, Tu]
and let ξ̄ = 1/

√
t so that by hypothesis, ξ̄ ∈ [a, b].

Let ξn = 2n/2ξ̄. Then

v̂(ξn, t) ≥ pn(2nξ̄2t)M2n

where pn is given by (21). Recalling the definition of Qn given in (20) one has

lim sup
n→∞

v̂(ξn, t) ≥ lim
n→∞

(
e−1MQn

)2n

= ∞

since Qn is an increasing sequence, and we are assuming that MQ∗e−1 > 1. ��
We note that the vanishing of the Fourier transform in a neighborhood of

the origin plays a distinct role in this problem. Indeed, while the previous result
shows that the solution leaves the space H∞ in finite time, it does so for a finite
time. To be precise,
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Proposition 14. Let v̂(ξ, t) be a solution of (10) with initial data v̂0(ξ) =
M1[a,b]. and β ∈ [0, 1/

√
2]. Then if a > 0, there exists T ∗

β > 0 such that

lim sup
ξ→∞

v̂(ξ, t) = 0, ∀t > T ∗
β .

Proof. The result follows by estimating the solution of the mild equation (10)
on intervals of the form ξ ∈ [a/βk, a/βk+1), k ≥ 0 and noting that for fixed t,
the vanishing of the initial data near the origin imposes a limit on the number
of branches that need to be consider.

For the particular initial data under consideration, (10) can be written as

v̂(ξ, t) = e−ξ2tM1b>ξ>a + ξ2
∫ t

0

e−ξ2(t−s)v̂2(βξ, s) ds.

Note that if ξ ∈ [0, a), the solution vanishes, and if ξ ∈ [a, a/β), v̂(ξ, t) = Me−ξ2t.
We consider first the case β < 1/

√
2. By induction one can show that if

a/βn ≤ ξ < a/βn+1 then

v̂(ξ, t) ≤ M

(
M

1 − 2α2

)γn

e−(2β2)nξ2t, (25)

where γn = 2n −1. Clearly the inequality holds for n = 0. Assuming the inequal-
ity holds for n = k and considering a/βk+1 ≤ ξ < a/βk+2, we obtain:

v̂(ξ, t) ≤ Me−ξ2t

⎛

⎝1 +
M2γk+1

(1 − 2β2)2γk
ξ2

t∫

0

eξ2s
(
e−(2β2)k(βξ)2s

)2
ds

⎞

⎠

= Me−ξ2t

⎛

⎝1 +
Mγk+1

(1 − 2β2)2γk
ξ2

t∫

0

e(1−(2β2)k+1)ξ2sds

⎞

⎠

= Me−ξ2t

(

1 +
Mγk+1

(1 − 2β2)2γk(1 − (2β2)k+1)

(
e(1−(2β2)k+1)ξ2t − 1

))

≤ Me−ξ2t Mγk+1

(1 − 2β2)2γk+1
e(1−(2β2)k+1)ξ2t

= M

(
M

1 − 2β2

)γk+1

e−(2β2)k+1ξ2t,

and so (25) holds for n = k + 1.
To complete the proof for β < 1/

√
2, note that for ξ ∈ [a/βn, a/βn+1) one

has

v̂(ξ, t) ≤ M

(
M

1 − 2β2

)γn

exp
(

−(2β2)n a2

β2n
t

)

= M

(
M

1 − 2β2

)2n−1

exp
(−2na2t

)

= (1 − 2β2)

(
Me−a2t

1 − 2β2

)2n

.
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With

T ∗
β =

1
a2

ln
(

M

1 − 2β2

)

one has for t > T ∗
β that

Me−a2t < 1 − 2β2

and the result follows since

lim
ξ→∞

v̂(ξ, t) ≤ lim
n→∞(1 − 2β2)

(
Me−a2t

1 − 2β2

)2n

= 0

The case of β = 1/
√

2 is similar with (25) now replaced for (
√

2)na ≤ ξ <
(
√

2)n+1a, by

v̂(ξ, t) ≤ Me−ξ2t

(

1 +
Mξ2t

2n−1

)γn

(26)

where γn = 2n − 1 as before. The statement holds for n = 0. Assume it holds
for n = k and consider a(

√
2)k+1 ≤ ξ < a(

√
2)k+2. Then

v̂(ξ, t) ≤ Me−ξ2t

⎛

⎝1 + Mξ2
t∫

0

eξ2s
(
e−(ξ/

√
2)2s
)2
(

1 +
M(ξ/

√
2)2s

2k−1

)2γk

ds

⎞

⎠

= Me−ξ2t

⎛

⎝1 + Mξ2
t∫

0

(

1 +
Mξ2s

2k

)2γk

ds

⎞

⎠

= Me−ξ2t

(

1 +
2k

2γk + 1

(

1 +
Mξ2t

2k

)2γk+1

− 2k

2γk + 1

)

≤ Me−ξ2t

(

1 +
Mξ2t

2k

)γk+1

.

and thus the inequality holds for n = k + 1.
To complete the proof in this case, note that for a(

√
2)n ≤ ξ < a(

√
2)n+1

one has from (26)

v̂(ξ, t) ≤ Me−2na2t
(
1 + 4Ma2t

)2n−1

≤ M

1 + 4Ma2t
exp
[−2n

(
a2t − ln(1 + 4Ma2t)

)]
.

Let a2T ∗
1/

√
2

be the positive solution of the equation s − ln(1 + 4Ms) = 0. Then
the result follows since for t > T ∗

1/
√
2
,

lim
ξ→∞

v̂(ξ, t) ≤ lim
n→∞ exp

[−2n
(
a2t − ln(1 + 4Ma2t)

)]
= 0

��
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6.4 Self-Similarity

We note that the existence/uniqueness and well-posedness in H∞ analysis of the
LJS-cascades, in both complex Burgers and β-field Burgers equations exploited
the natural scaling (ξ, t) → (ξ/λ, λ2t) in the crucial ways, most notably through
the scaling-invariance of V• and N• in Propositions 6, 11, and 9. Clearly, self-
similar solutions in this setting are the unique solutions that arise from the
self-similar initial data v̂0(ξ) = v̂0(ξ/λ), i.e. from constant v̂0. Thus, self-similar
solutions present the limit-case scenarios for establishing existence (through the
finiteness of the expected values (9)), uniqueness (through the non-explosion of
the LJS-cascades) as well as lack of well-posedness (the most obvious ill-posed
solutions are bounded below by self-similar solutions).

Remark 13. In the case v̂(ξ, t) is a self-similar solution, using the change of
variables τ = ξ2t and setting w(τ) = v(ξ, t) = v(1, τ) we obtain a self-similar
form of the complex Burgers Eq. (7):

w(τ) = w0e
−τ +

τ∫

0

e−σ

1∫

0

w(|η|2(τ − σ))w(|1 − η|2(τ − σ)) dηdσ,

as well as a self-similar from of the β-field Burgers equations (10):

w(τ) = w0e
−τ +

τ∫

0

e−σw2(β2(τ − σ)) dσ. (27)

Note that for α = β2, the last equation is a mild formulation of the following
non-local differential equation:

u′(t) = −u(t) + u2(αt).

In [15] we refer to this equation as the α-Riccati equation and analyse it’s LJS-
cascades in the case α > 1.

This close connection between well-posedness of self-similar and general (non-
symmetric) solutions is more pronounced here than in the Navier-Stokes case
treated in [13]. Viewed from the prism of the symmetry breaking question:

Symmetry Breaking: Does the existence and uniqueness, or even well-
posedness, of self-similar solutions differ from that of general non self-similar
solutions in appropriate settings?

For the Navier-Stokes case,5 lack of symmetry breaking appeared on the
level of LJS-cascades, which had the same finiteness and explosion properties
for both self-similar and general formulations. For the Burgers equation in H∞,
5 The explosion problem for the self-similar LJS-cascade has been resolved in [16],

where it has been shown that indeed explosion occurs.
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Theorem 2 establishes that general solutions exhibit exactly the same properties
as self-similar ones in this regard, and so there is no symmetry breaking in Burgers
(nor in β-field Burgers) equations. The following is a stronger and more intriguing
formulation of the question:

Symmetry and Regularity: Does well-posedness (or lack of it) of self-similar
solutions in a natural scaling-invariant space mirror the persistence of regu-
larity (or loss of it) for general solutions?

As we have seen in the case of β-field Burgers equation for β = 1/
√

2, the
lack of well-posedness in H∞ of self-similar solutions is correlated with a finite-
time regularity loss for solutions arising from the smoothest possible initial data,
albeit compactly supported in Fourier space. Thus it appears that, at least in
this case, existence/uniqueness, well-posedness, and regularity properties of mild
solutions are mirrored by the existence/uniqueness and well-posedness properties
of the self-similar solutions.

Acknowledgments. This work was partially supported by grants DMS-1408947,
DMS-1408939, DMS-1211413, and DMS-1516487 from the National Science
Foundation.
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Abstract. We investigate the question of whether chaotic size depen-
dence occurs on hierarchical lattices and demonstrate that it is not
present in these systems. Our results show that the metastate for spin
glasses on hierarchical lattices is simple.

Keywords: Spin glasses · Migdal–Kadanoff · Chaotic size dependence

1 Introduction

Chuck Newman’s many contributions to statistical physics include fundamental
insights into the proper definitions of “thermodynamic limit” for disordered sys-
tems such as spin glasses. He and Dan Stein elucidated the notions of chaotic size
dependence (CSD) and of the metastate [21–24,29]. For systems with CSD, the
usual thermodynamic limit fails to exist and one cannot define a unique thermo-
dynamic state of the system. Instead, the infinite volume limit must be described
through the metatstate, a probability distribution over thermodynamic states
(see also [1]). For a heuristic understanding of CSD, consider correlation func-
tions in a disordered spin system. Specifically, consider spin correlation functions
within a system of size L within a large environment of size L′ with L′ � L. Now,
imagine increasing L′ keeping the couplings that have already been determined
at smaller sizes and the boundary conditions fixed. How do the spin correlation
functions in the system change as L′ increases keeping L fixed? If the usual
thermodynamic limit exists these correlation functions all converges to a limit.
If CSD holds, then some correlation functions in the system fail to settle down
as L′ increases.

A primary motivation for introducing chaotic size dependence and the metas-
tate was to settle the question of the low-temperature behavior of the Edwards–
Anderson model [11], the Ising spin glass on finite-dimensional Euclidean lattices.
The mean field Ising spin glass or Sherrington–Kirkpatrick model was solved by
Parisi [25,26]. His solution uses the replica trick and requires replica symmetry
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breaking (RSB). The RSB solution displays a infinitely many thermodynamic
states and a number of other related properties that are quite counter to stan-
dard intuition about the nature of the low temperature phase of spin systems.
The question that naturally arises is whether the counterintuitive features of the
RSB solution also hold for the Edwards–Anderson spin glass. An alternative sce-
nario holds that the mean field solution is misleading and the Edwards–Anderson
model behaves more like the ferromagnetic Ising model with a simple thermo-
dynamic limit consisting of a single pair of pure states related by a global spin
flip. This simpler picture was by developed by McMillan [19], Bray and Moore
[8], and Fisher and Huse [12–14] and goes by the name droplet-scaling. After
several decades of intense study and controversy, the question of which general
scenario is correct remains open. However, Chuck and Dan’s work on CSD and
the metastate has radically sharpened the question and yielded insights so that
at least we now know what the question is and what it would mean for some-
thing like RSB to hold for spin systems on finite-dimensional Euclidean lattices.
The resulting non-standard RSB metastate [22,27] has several strange features,
including CSD and support on an uncountable infinity of thermodynamic states.
Chuck and Dan also introduced an alternative, perhaps more plausible, scenario
also displaying CSD, called the chaotic pairs picture [21]. In chaotic pairs, the
support of the metastate is thermodynamic states each consisting of a single
pair of pure states. In chaotic pairs, for a given large volume, one sees only two
pure state related by a spin flip whereas for non-standard RSB, one sees evi-
dence of many pure states. In both cases, there is CSD so that as the system
size increases, the observed pure states change.

While we wait for the breakthrough that finally settles the question of the
nature of the low temperature phase of the Edwards–Anderson model, it is use-
ful to seek guidance from simpler systems. One such simpler system is the spin
glass on a hierarchical lattice. The study of disordered spin systems on hierarchi-
cal lattices has a long history [2,4,7,9,10,15–18,20,28]. Analyzing spin systems
on a hierarchical lattices often yields better qualitative results than mean field
theory, equivalent to spins on the complete graph. For example, hierarchical lat-
tices can be assigned an effective dimensionality and the behavior the system as
a function of dimensionality can be studied while the complete graph is effec-
tively infinite dimensional. The behavior of spin systems on hierarchical lattices
is usually analytically tractable or at least amenable to simple numerical simula-
tions. A key motivation for studying spin systems on hierarchical lattices is the
Migdal–Kadanoff real space renormalization group scheme, which was shown to
be equivalent to solving the spin model on a hierarchical lattice [3]. As in the
case of mean field theory, the applicability of the results to Euclidean lattices
must be treated with skepticism.

There have been a number of studies of the Ising spin glass on hierarchical
lattices [7,10,15,18,20,28]. Gardner [15] showed that the overlap distribution for
the Ising model on the diamond hierarchical lattice consists of two delta functions
suggesting that for each finite size system only a single pair of thermodynamic
pure states is present. A second argument against the RSB picture on hierarchical
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lattices is the fact that the exponent describing the dimension of domain walls is
trivially required to be d−1 so domains walls cannot be space filling. Later work
explains why the RSB scenario can appear to be correct for small sizes despite
its absence in the infinite volume limit [20].

Although the above observations would seem to preclude a complex metas-
tate on hierarchical lattices, they do not obviously rule out the chaotic pairs
picture [21]. Here we directly confront the question of whether the metastate for
the Ising spin glass on hierarchical lattices contains many pairs of pure states
by studying chaotic size dependence. In the process of answering this question
we must develop new recursion relations that describe the influence of the envi-
ronment on pair correlations. Our conclusion is that, at least for the two most
commonly used examples of hierarchical lattices, there is no chaotic size depen-
dence. We thus rule out both the RSB and the chaotic pairs scenarios for spin
glasses on these hierarchical lattices.

2 Spin Glasses on Hierarchical Lattices

A multigraph G(V,E, r) consists of a set of vertices V , edges E and a function
r : E → {{u, v} : u, v ∈ V and u �= v}. A multigraph is distinguished from a
graph by the possibility of multiple edges connecting the same pair of vertices.
The Ising spin glass on a multigraph is defined by the Hamiltonian,

−βH =
∑

e∈E
r(e)={u,v}

KeSuSv

where the summation is over edges e connecting vertices u and v. The set {Ke}
consists of i.i.d. quenched random couplings on edges e. Here we assume that
the distribution of couplings is Gaussian with mean zero. The variance of this
Gaussian increases linearly with inverse temperature β. An Ising spin Su = ±1
exists on each vertex u.

Hierarchical lattices are multigraphs built recursively by substituting a tem-
plate for each instance of an edge at the previous level of the construction. The
template and the construction process for the “necklace” hierarchical lattice are
shown in Fig. 1. The necklace is parameterized by a scale factor b and dimension
d. The number of parallel edges connecting adjacent vertices is bd−1 while the
length of the chain of vertices is b. In each step of the construction, the length
scale of the system increases by the factor b. The figure shows the case b = 2
and d = 3.

The diamond and necklace hierarchical lattices are dual to one another and
the results for spin glasses are similar although some exponents differ. Here we
focus on the necklace lattice because the analysis is slightly simpler though the
qualitative results are the same for diamond lattice.
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Fig. 1. Construction and decimation of the necklace hierarchical lattice for b = 2 and
d = 3. The arrow points in the direction of decimation where eight bonds K are replaced
by a single bond K′. Construction of the hierarchical lattice proceeds in the reverse
direction with the template consisting of a single bond connecting two spin replaced
by eight bonds connecting three spins.

A key advantage of studying spin systems on hierarchical lattices is that real
space renormalization group methods may be implemented exactly. The deci-
mation of spins follows the construction process of the multigraph in reverse, as
shown in Fig. 1. Each edge is populated with a random coupling and an effective
coupling connecting the two outermost spins in the template is computed by
summing over the interior spins. This process consists of two steps. In the first
step, all parallel couplings connecting the same pair of spins {u, v} are added
together,

K̃(u, v) =
∑

e∈r−1({u,v})
Ke (1)

In the second step, the linear chain of spins and couplings K̃ are combined into
a single effective coupling K ′, on the edge e′ connecting the outermost vertices
in the template, u and v, with intermediate vertex z. For the case studied here,
b = 2, decimation results in the relation [9],

K ′
e′ =

1
2

log
[
cosh(K̃(u, z) + K̃(z, v))
cosh(K̃(u, z) − K̃(z, v))

]
. (2)

We adopt a shorthand notation for this commutative operation,

x ⊗ y ≡ 1
2

log
[
cosh(x + y)
cosh(x − y)

]
,
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so that
K ′

e′ = K̃(u, z) ⊗ K̃(z, v)

For spin glasses, where the couplings are chosen from a distribution, the recursion
relations act on random variables so (1) and 2 define a functional renormalization
group for the distribution of couplings.

For the Ising spin glass on a hierarchical lattice with d � 2.5 there is a zero
temperature or strong disorder fixed point that controls the low temperature
spin glass phase. At the strong disorder fixed point, the coupling distribution
scales under the recursion relations with a fixed form but increasing variance.
In addition to the usual magnetic and thermal exponents, strong disorder fixed
points are described by a third independent critical exponent, θ, which character-
izes how the variance of the coupling distribution increases under the recursion
relations according to,

b2θ =
var(K ′)
var(K)

. (3)

Since the coupling between the two terminal spins of the system characterizes
the stiffness of the system, θ can be identified as the stiffness exponent.

Near the strong disorder fixed point the recursion relations simplify since the
variance of the coupling distribution is very large. For random variables with
very large variance the decimation operator reduces to

x ⊗ y = min
( |x|, |y| ) sign

(
xy

)
, (4)

and, specifically, (2) becomes

K ′
e′ = min

( |K̃(u, z)|, |K̃(z, v)| ) sign
(
K̃(u, z)K̃(z, v)

)
. (5)

In the limit of large d, the recursion relations simplify further and the stiffness
exponent can be evaluated analytically because the distribution of K̃ is Gaussian
with variance given by σ2 = bd−1var(K). For b = 2, the variance of K ′ is obtained
from (5) and the Gaussian form for K̃,

var(K ′) =
1

πσ2

∫ ∞

−∞
dx

∫ |x|

−|x|
dy y2e−(x2+y2)/2σ2

=
(

π − 2
π

)
σ2,

so the stiffness exponent is given by

2θ = d − 1 − log2

(
π

π − 2

)
≈ d − 2.46.

Although this results was obtained in the large d limit it remains a good approxi-
mation for small d because the fixed distribution is close to Gaussian [6,28]. One
conclusion is that the lower critical dimension on the diamond hierarchical lattice
is about 2.5 [5].
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3 Chaotic Size Dependence on Hierarchical Lattices

In order to investigate CSD we must understand how the environment affects a
system embedded in a larger environment. Figure 2 shows such a situation. In this
figure, renormalization has been carried out so that the system is represented
by its two terminal vertices and a single edge, shown as a dotted line. The
environment is shown as extending to five levels in the hierarchy above the level
of the system. In shorthand notation used hereafter, Ki is the random variable
representing the distribution of renormalized couplings at level i above the level
of the system. We suppose the environment is subject to free boundary conditions
so the influence of the environment on the system is via coupling through the
environment between the terminal spins of the system. If this coupling is at least
as strong as the system coupling and changes sign as the environment grows,
there is CSD. On the other hand, if this coupling converges to a limit, then CSD
does not occur.

Figure 2 shows the system located at the top end of the environment so
that it includes the upper terminal spin of the environment. The system may
exist anywhere within the environment so this arrangement would seem to be a
special case. However, for an environment a given factor larger than the system,
the bonds coupling the terminal vertices of the system through the environment
have the same connectivity, independent of the location of the system. This
“translation invariance” means that we need only carry out the calculation for
the system position shown in Fig. 2. This invariance is essentially equivalent to
the fact that the decimation relation “⊗” is commutative.

Figure 3 shows the environment in reduced form where parallel edges are
combined into a single edge. We are now ready to write down recursion relations
for the environmental coupling between the terminal spins of the system. Let
Bh be the random variable describing the coupling through the environment
between the terminal spins of the system if the environment is h levels larger
than the system. It is evident that

B1 =
n∑

j=1

K
(j)
i = Sw−1(K0),

where w = bd−1 and the notation Sn(X) is a shorthand for the random variable
obtained by adding n i.i.d. random variables, X(1) . . . X(n),

Sn(X) ≡
n∑

j=1

X(j). (6)

The recursion relations for the environmental couplings are expressed as a pat-
tern replacement rule rather than an equation. The replacement that produces
Bh+1 from Bh is

Sw−1(Kh−1) → Sw−1(Kh−1) + Sw(Kh−1) ⊗ Sw−1(Kh).
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Fig. 2. A system, represented by a single bond K0 in an environment that is h = 4
levels larger than the system.

For example, B2 is obtained from B1 using the replacement rule,

B2 = Sw−1(K0) + Sw(K0) ⊗ Sw−1(K1).

and, expanding the environment one step further, we obtain

B3 = Sw−1(K0) + Sw(K0) ⊗ [
Sw−1(K1) + Sw(K1) ⊗ Sw−1(K2)

]
.

The net coupling Ktot between the terminal spins of the system is given by
the sum of the internal coupling K0 and the environmental coupling Bh,

Ktot = K0 + Bh

In the low temperature phase of a large system, the distribution of Ktot is the
sum of two independent random variables each with mean zero and large variance
so it also has mean zero and large variance. Thus the correlation between the
terminal spins is almost always determined simply by the sign of Ktot. The exis-
tence of CSD is thus equivalent to Ktot changing sign indefinitely as h increases.
It is important to note that in studying CSD, we require that the system and
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Fig. 3. The same system and environment as shown in Fig. 2 but with parallel bonds
replaced by a single bond using the notation of (6).

the environment up to level h are held fixed as the environment expands and h
increases.

In the low temperature phase of a large system, the distribution of Ki is
close to the strong disorder fixed distribution so that, in the replacement rule
that defines Bh, we may replace Ki by λiK0 where λ = bθ (see (3)). To simplify
the notation, we now set K0 to K and, without loss of generality, normalize K to
have unit variance. In the strong disorder limit, the expression for B2 becomes,

B2 = Sw−1(K) + Sw(K) ⊗ λSw−1(K).

and the pattern replacement to go from Bh from Bh+1 is

λh−1Sw−1(K) → λh−1Sw−1(K) + λh−1Sw(K) ⊗ λhSw−1(K).

Since the replacement rule in the strong disorder regime depends on h only
through the explicit power of λ we can write a recursive equation for Bh in
terms of Bh−1,

Bh = Sw−1(K) + Sw(K) ⊗ λBh−1, (7)
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which, together with the initial condition B0 = 0, determines the distributions
of environmental couplings for all sizes h.

Observing that the two terms in (7) are independent and recalling (4) we
have the following lower and upper bounds on the variance of Bh,

w − 1 ≤ var(Bh) ≤ 2w − 1.

While this bound assures us that the environmental coupling is of the same order
as the internal coupling, it does not rule out CSD since a sequence of realizations
of the environmental coupling may not settle down.

Let b1, b2, . . . , bk, . . . be a sequence of realizations of environmental couplings
obtained by expanding the environment so that bk is the realization of the envi-
ronment at level k above the system level. We stress again that bk+1 is obtained
from bk without changing any of the couplings already chosen for bk. Our main
result is that this sequence almost surely becomes a constant sequence after a
finite number of steps. The result is based on “unrolling” the expression for bk

making more and more terms explicit. We shall find inequalities that are suffi-
cient to establish the existence of a k′ such that no further changes occur in the
sequence after k′: bk = bk′ for all k ≥ k′.

Consider the expression for bk with k ≥ 3, explicitly shown to three levels in
the hierarchy above the system,

bk = x(0) + x(1) ⊗ λb̃k,1, (8)

where
b̃k,1 = x(2) + x(3) ⊗ λb̃k,2. (9)

The random variates x(0) and x(2) are independently chosen from Sw−1(K) while
x(1) and x(3) are independent random variates chosen from Sw(K). Finally, b̃k,2

depends on k and is a complicated random variate obtained from application of
the replacement rules. For the present, we do not need to know anything about
b̃k,2. Now suppose that it is the case that the random variates appearing in (8)
and (9) satisfy the inequality,

λ(|x(2)| − |x(3)|) > |x(1)|. (10)

Keeping in mind (4), it is straightforward to see that if this inequality holds then
the value of b̃k,2 is irrelevant and for all k ≥ 3,

bk = x(0) + x(1)sign(x(2)),

Another way of saying this is that the quantity, x(1) ⊗ λb̃k,1, which potentially
depends on k, can be replaced by the constant quantity x(1)sign(x(2)) for all
k ≥ 3 and all coupling more than two levels above the system level are irrelevant
to Ktot. The event defined in (10) occurs with some probability p > 0 and is
a sufficient condition for the sequence of boundary couplings to be constant
beyond level 2. Note that in the large d limit where λ � 1, p → 1/2.
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Suppose the event of (10) does not occur, we can continue to unroll the
expression for bk until an inequality similar to (10) is satisfied. The unrolling of
bk is obtained from the pattern replacement rule for b̃k,�,

b̃k,� → x(2�) + x(2�+1) ⊗ λb̃k,�+1

where x(2�) is drawn from Sw−1(K) and x(2�+1) is drawn Sw(K). The correctness
of this replacement rule follows from the recursive expression, (7) which allows
us to successively unroll bk leaving more couplings explicitly expressed while
the remaining couplings are buried in b̃k,�. Note that we could have started the
unrolling of bk with the fully implicit equation, bk = b̃k,0. Note also that, b̃k,� is
only defined for k > �.

Now suppose that it is the case that at some stage of this unrolling, we have
that

λ(|x(2�)| − |x(2�+1)|) > |x(2�−1)|. (11)

It straightforward to see that if this inequality holds then the expression x(2�−1)⊗
λb̃k,�, which is potentially dependent on k is, in fact, equal to the constant
x(2�−1)sign(x(2�)) for all k ≥ � + 2 and therefore, bk is constant for all k ≥
� + 2. It is important to observe that all events of the form (11) (including the
event of (10)) occur with the same probability p. Thus, the probability that the
sequence is not constant up to level � is bounded by (1 − p)� and decays at least
exponentially in �.

4 Discussion

We have shown that the Ising spin glass on the necklace hierarchical lattice does
not display chaotic size dependence. Similar arguments lead to the same conclu-
sion for the more commonly employed diamond hierarchical lattice. Since both
the replica symmetry breaking and chaotic pairs scenarios imply chaotic size
dependence, we can conclude that, at least on hierarchical lattices, neither of
these scenarios is correct. Our results show that all correlation functions within
a system are unaffected by distant changes in the environment once the environ-
ment has reached a sufficiently large size. The convergence to the thermodynamic
limit occurs exponentially in the level, h of the environment above the system.
Thus, in terms of the ratio of length scales of the environment to the system,
L/L0 = bh we have power law convergence to the thermodynamic limit. If the
exponent describing this convergence is small, chaotic size dependence may be
observed initially and the system may not settle down until the environment is
too large to explore using numerical methods.
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Abstract. The 1-arm exponent ρ for the ferromagnetic Ising model on
Z

d is the critical exponent that describes how fast the critical 1-spin
expectation at the center of the ball of radius r surrounded by plus
spins decays in powers of r. Suppose that the spin-spin coupling J is
translation-invariant, Zd-symmetric and finite-range. Using the random-
current representation and assuming the anomalous dimension η = 0, we
show that the optimal mean-field bound ρ ≤ 1 holds for all dimensions
d > 4. This significantly improves a bound previously obtained by a
hyperscaling inequality.

Keywords: Ising model · 1-arm exponent · Random-current
representation
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papers on phase transitions and critical behavior of percolation and the Ising model.
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about my presentation, which he may no longer remember. Since then, I became a big
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The topic of my presentation back in summer 2004 was about the critical exponent

ρ for the percolation 1-arm probability in high dimensions [24]. The 1-arm probability

is the probability that the center of the ball of radius r is connected to its surface by a

path of occupied bonds. Compared with most of the other critical exponents, such as
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β, γ, η and δ, the 1-arm exponent ρ is harder to investigate, not because we still do not

know the continuity of the critical percolation probability (= the r ↑ ∞ limit of the

critical 1-arm probability), but because ρ is associated with a finite-volume quantity

and therefore deals with boundary effects. Even in high dimensions, it is difficult to

identify the mean-field value of ρ. However, by the second-moment method [24], it

is rather easy to show the one-sided inequality ρ ≤ 2, if ρ exists and η = 0. The

latter assumption is known to hold in high dimensions, thanks to the lace-expansion

results [13,14]. Then, in [22], Kozma and Nachmias finally proved the equality ρ = 2

by assuming η = 0 and using a sophisticated inductive argument.

1 Introduction

We consider the ferromagnetic Ising model at its critical temperature T = Tc,
and study the 1-spin expectation 〈σo〉+r at the center of a ball of radius r sur-
rounded by plus spins. The decreasing limit of 〈σo〉+r as r ↑ ∞ is the sponta-
neous magnetization. Recently, Aizenman, Duminil-Copin and Sidoravicius [4]
showed that, if the spin-spin coupling satisfies a strong symmetry condition called
reflection-positivity, then the spontaneous magnetization is a continuous function
of temperature in all dimensions d > 2, in particular limr↑∞〈σo〉+r = 0 at critical-
ity. The present paper gives quantitative bounds on the rate of convergence. The
nearest-neighbor model is an example that satisfies reflection-positivity. Also, its
spontaneous magnetization on Z

2 is known to be zero at criticality [32]. However,
in general, finite-range models do not satisfy reflection-positivity, and therefore
we cannot automatically justify continuity of the spontaneous magnetization for,
e.g., the next-nearest-neighbor model. Fortunately, by using the lace expansion
[7,25], we can avoid assuming reflection-positivity to ensure η = 0 (as well as
β = 1/2, γ = 1, δ = 3) and limr↑∞〈σo〉+r = 0 at criticality in dimensions d > 4
if the support of J is large enough.

In this paper, we prove that it does not decay very fast whenever d > 4; in
this case we prove 〈σo〉+r ≥ r−1+o(1). The proof relies on the random-current rep-
resentation, which is a sophisticated version of the high-temperature expansion.
It was initiated in [11] to show the GHS inequality. Then, in 1980s, Aizenman
revived it to show that the bubble condition (i.e., square-summability of the
critical 2-spin expectation) is a sufficient condition for the mean-field behavior
[1,3,5]. It is also used in [4,25,26] to obtain many useful results for the Ising and
ϕ4 models. In combination with the second-moment method, we prove a cor-
relation inequality that involves 〈σo〉+r and free-boundary 2-spin expectations.
Then, by using this correlation inequality, we derive the desired result.

First, we provide the precise definition of the model.

1.1 The Model

First we define the Ising model on VR, which is the d-dimensional ball of radius
R > 0:

VR = {v ∈ Z
d : |v| ≤ R}.
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It is convenient to use the Euclidean distance | · | here, but our results hold for
any norm on the lattice Z

d. We define the Hamiltonian for a spin configuration
σ ≡ {σv}v∈VR

∈ {±1}VR as

Hh
r,R(σ) = −

∑

{u,v}⊂VR

Ju,vσuσv − h
∑

v∈∂Vr

σv,

where Ju,v ≥ 0 is a translation-invariant, Z
d-symmetric and finite-range cou-

pling, h is the strength of the external magnetic field, and ∂Vr (r < R) is the
boundary of Vr:

∂Vr = {v ∈ VR \ Vr : ∃u ∈ Vr such that Ju,v > 0}.

We note that it is crucial to impose the external magnetic field only on ∂Vr. Due
to this slightly unusual setup, we will eventually be able to derive an essential
correlation inequality that differs from the one for percolation.

The thermal expectation of a function f on spin configurations at the critical
temperature Tc is given by

〈f〉h
r,R =

1
2|VR|

∑

σ∈{±1}VR

f(σ)
e−Hh

r,R(σ)/Tc

Zh
r,R

,

Zh
r,R =

1
2|VR|

∑

σ∈{±1}VR

e−Hh
r,R(σ)/Tc .

The major quantities to be investigated are the 1-spin and 2-spin expectations.
Since they are increasing in h by Griffiths’ inequality [10], we simply denote their
limits by

〈σx〉+r = lim
h↑∞

〈σx〉h
r,R [x ∈ Vr ∪ ∂Vr],

〈σxσy〉R = lim
h↓0

〈σxσy〉h
r,R [x, y ∈ VR].

Since 〈σxσy〉R is also increasing in R by Griffiths’ inequality, we denote its limit
by

〈σxσy〉 = lim
R↑∞

〈σxσy〉R.

In the following statement (as well as later in the proofs) we use the notation
f � g to mean that the ratio f/g is bounded away from zero and infinity (in
the prescribed limit). One assumption that we shall make throughout is the
mean-field decay for the critical 2-spin expectation (or often called two-point
function)

〈σoσx〉 � |x|2−d as |x| ↑ ∞. (1)

A sharp asymptotic expression that implies (1) is proven by the lace expansion
for a fairly general class of J , whenever the support of J is sufficiently large [25].
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We note that reflection positivity has not succeeded in providing the above two-
sided x-space bound; only one exception is the nearest-neighbor model, for which
a one-sided x-space bound is proven [29]. In dimensions d < 4, the exponent on
the right-hand side may change. An exact solution for d = 2 was identified by
Wu et al. [31], which implies 〈σoσx〉 � |x|−1/4 as |x| ↑ ∞.

1.2 The Main Result

We are investigating the 1-arm exponent for the Ising model at criticality, infor-
mally described as 〈σo〉+r ≈ r−ρ as r ↑ ∞. In order to make the symbol ≈ precise,
we give the formal definition

ρ = − lim inf
r→∞

log〈σo〉+r
log r

. (2)

A more conventional way of defining ρ is by letting 〈σo〉+r � r−ρ as r ↑ ∞,
which was used to define the percolation 1-arm exponent [22,24]. However, the
latter definition does not necessarily guarantee the existence of ρ. To avoid this
existence issue, we adopt the former definition (2).

Our main result is the one-sided bound ρ ≤ 1 in the mean-field regime, i.e.,
when d > 4 and (1) holds. Folklore of statistical physics predicts that (2) is
actually a limit. The use of limit inferior is somewhat arbitrary (lim sup would
be also possible), but this choice gives the strongest result.

Theorem 1. For the ferromagnetic Ising model on Z
d, d > 4, defined by a

translation-invariant, Zd-symmetric and finite-range spin-spin coupling satisfy-
ing (1),

lim inf
r→∞ r1+ε〈σo〉+r = ∞ (3)

whenever ε > 0. Consequently, the critical exponent ρ defined in (2) satisfies
ρ ≤ 1.

Tasaki [30] proved that 〈σo〉+|x|/3 ≥ √〈σoσx〉 holds at any temperature for
sufficiently large |x| (so that |x|/3 is larger than the range of the spin-spin
coupling). In dimensions d > 4, this implies the hyperscaling inequality ρ ≤
(d − 2)/2, and our bound in (3) improves on Tasaki’s result.

It is a challenge now to prove

lim sup
r→∞

r1−ε〈σo〉+r = 0

for any ε > 0, which implies readily (together with our theorem) that (2) is
actually a limit and ρ = 1.

Our proof of ρ ≤ 1 uses (1), which requires d > 4 (and the support of J to
be large), even though the result is believed to be true for all dimensions d ≥ 2.
The aforementioned correlation inequality 〈σo〉+|x|/3 ≥ √〈σoσx〉 combined with
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the exact solution for d = 2 [31] and numerical predictions for d = 3, 4 supports
this belief. This is why we call ρ ≤ 1 the optimal mean-field bound.

Another key ingredient for the proof of ρ ≤ 1 is the random-current represen-
tation, which provides a translation between spin correlations and percolation-
like connectivity events. Then, by applying the second-moment method to the
connectivity events as explained below for percolation, we can derive a crucial
correlation inequality (cf. (6)) that relates 1-spin and 2-spin expectations. To
explain what the second-moment method is and to compare the resulting corre-
lation inequalities for the two models, we spend the next subsection to explain
the derivation of the mean-field bound on the percolation 1-arm exponent, i.e.,
ρ ≤ 2 for d > 6.

1.3 Derivation of the Mean-Field Bound for Percolation

We consider the following bond percolation on Z
d. Each bond {u, v} ⊂ Z

d is
either occupied or vacant with probability pJu,v or 1 − pJu,v, independently of
the other bonds, where p ≥ 0 is the percolation parameter. The 2-point function
Gp(x, y) is the probability that x is connected to y by a path of occupied bonds
(Gp(x, x) = 1 by convention). It is well-known that, for any d ≥ 2, there is a
nontrivial critical point pc such that the susceptibility

∑
x Gp(o, x) is finite if

and only if p < pc [6]. The 1-arm probability θr, which is the probability that
the center of the ball of radius r is connected to its surface by a path of occupied
bonds, also exhibits a phase transition at pc [2]: θ(p) ≡ limr↑∞ θr = 0 if p < pc
and θ(p) > 0 if p > pc. Although the continuity θ(pc) = 0 has not yet been
proven in full generality, it is shown by the lace expansion [9,15] that, if d > 6
and the support of J is sufficiently large, then θ(pc) = 0 and Gpc(o, x) � |x|2−d

as |x| ↑ ∞. This Newtonian behavior of Gpc is believed not to hold in lower
dimensions.

Fix p = pc and define the percolation 1-arm exponent ρ by letting θr � r−ρ

as r ↑ ∞. Since θ|x|/3 ≥ √
Gp(o, x) if |x| � 1 [30], it is known that the same

hyperscaling inequality ρ ≤ (d − 2)/2 holds for all dimensions d > 6. In [24], we
were able to improve this to the optimal mean-field bound ρ ≤ 2 for d > 6 by
using the second-moment method, which we explain now. Let Xr be the random
number of vertices on ∂Vr that are connected to the origin o. We note that Xr

can be positive only when o is connected to ∂Vr. Then, by the Schwarz inequality,

Ep[Xr]2 = Ep

[
Xr1{o is connected to ∂Vr}

]2

≤ Ep

[
1{o is connected to ∂Vr}

]

︸ ︷︷ ︸
=θr

Ep[X2
r ],
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which implies θr ≥ Ep[Xr]2/Ep[X2
r ]. Notice that Ep[Xr] =

∑
x∈∂Vr

Gp(o, x) and
that, by the tree-graph inequality [6],

Ep[X2
r ] =

∑

x,y∈∂Vr

Pp(o is connected to x, y)

≤
∑

u∈Z
d

x,y∈∂Vr

Gp(o, u)Gp(u, x)Gp(u, y).

As a result, we arrive at the correlation inequality

θr ≥

( ∑

x∈∂Vr

Gp(o, x)
)2

∑

u∈Z
d

x,y∈∂Vr

Gp(o, u)Gp(u, x)Gp(u, y)
. (4)

Using Gpc(x, y) � ‖|x−y‖|2−d, where ‖|·‖| = | · |∨1 is to avoid singularity around
zero, we can readily show that the right-hand side of the above inequality is
bounded from below by a multiple of r−2, resulting in ρ ≤ 2 for d > 6.

In order to prove the opposite inequality ρ ≥ 2 for d > 6 to conclude
the equality, Kozma and Nachmias [22] use another correlation inequality that
involves not only θr and Gp but also the mean-field cluster-size distribution.
The Ising cluster-size distribution under the random-current representation is
not available yet, and we are currently heading in that direction.

1.4 Further Discussion

1. On trees. The Ising model on trees, also known as the Ising model on the
Bethe lattice, is rigorously studied since the 1970s [21,23]. In contrast to
amenable graphs, the phase transition on trees can appear even when there is
a non-zero homogeneous random field, cf. [20]. One line of research considers
critical-field Ising models under the influence of an inhomogeneous external
field, for which we refer to the discussion in [8]. The absence of loops in
the underlying graph makes it easier to analyze, and a number of critical
exponents are known to take on their mean-field values, see [27, Section 4.2].
For the Ising model on a regular tree, it is shown [18] that

〈σo〉+r � r−1/2 as r ↑ ∞,

where, instead of the ball Vr, we are using the subtree of depth r from the
root (with the plus-boundary condition). This proves ρ = 1/2 on trees. The
discrepancy to the high-dimensional setting can be resolved by adjusting the
notion of distance in the tree, that is, one should rather work with the metric
dist(o, x) :=

√
depth(x) incorporating spatial effects when embedding the

tree into the lattice Z
d. With this notion of distance, we get the mean-field

value ρ = 1. The same situation occurs for percolation, where we refer to
[12,16] for a discussion of this issue.
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2. Long-range models. In our result, we assumed that the spin-spin coupling J is
finite-range, that is, there is an M > 0 such that Jo,x = 0 whenever |x| > M .
We believe that ρ = 1 is true even for infinite-range couplings with sufficiently
fast decaying tails, although the boundary ∂Vr on which the external magnetic
field is imposed under the current setting is no longer bounded. The situation
may change when we consider couplings with regularly-varying tails, and we
focus now on the situation when

Jo,x � |x|−d−α as |x| ↑ ∞, (5)

for some α > 0. In our earlier work [7,17], we show that, under a suitable
spread-out condition, the critical 2-spin expectation scales as

〈σoσx〉 � |x|α∧2−d as |x| ↑ ∞,

in contrast to (1). In particular, there is a crossover at α = 2 between a
“finite-range regime” and a “long-range regime”.
For the critical exponent ρ, it is tempting to believe that this crossover hap-
pens for α = 4. The reason for this is again a comparable result for per-
colation: Hulshof [19] proved that, if Gpc(o, x) � |x|α∧2−d as |x| ↑ ∞, then
the critical 1-arm probability scales as θr � r−(α∧4)/2 as r ↑ ∞. In view
of Hulshof’s result, it is plausible that, for the long-range Ising model with
couplings like in (5), it is the case that ρ = (α ∧ 4)/4.

3. The (1-component) ϕ4 model. This spin model is considered to be in the same
universality class as Ising ferromagnets [1]. It can be constructed as an N ↑ ∞
limit of a properly coupled N ferromagnetic Ising systems [28], and therefore
we can apply the random-current representation for the Ising model. By virtue
of this representation, we can use the lace expansion to show that the critical
2-spin expectation satisfies (1) for a large class of short-range models [26]. It
is natural to be interested in the critical 1-spin expectation similar to 〈σo〉+r
for the Ising model. However, since the ϕ4 spin is an unbounded variable,
we cannot simply take h ↑ ∞ to define the 1-spin expectation under the
“plus-boundary” condition. Once it is defined appropriately, we believe that
its 1-arm exponent also satisfies the mean-field bound ρ ≤ 1 for d > 4.

From the next section, we begin the proof of the main theorem. In Sect. 2.1,
we introduce notation and definitions associated with the random-current repre-
sentation. In Sect. 2.2, we use the random-current representation and the second-
moment method to derive a key correlation inequality. Finally, in Sect. 2.3, we
use the obtained correlation inequality and (1) to conclude that ρ ≤ 1 for d > 4.

2 Proof of the Results

2.1 The Random-Current Representation

A current configuration n ≡ {nb} is a set of nonnegative integers on bonds
b ∈ BR ≡ {{u, v} ⊂ VR : Ju,v > 0

}
or b ∈ Gr ≡ {{v, g} : v ∈ ∂Vr

}
, where g is
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〈σo〉hr,R = , 〈σoσx〉R = .

Fig. 1. The random-current representation for 〈σo〉h
r,R and 〈σoσx〉R. The bonds with

even current are all omitted. The vertex connected by dashed line segments is the ghost
site g.

an imaginary ghost site. Given a current configuration n, we define the source
set ∂n as

∂n =
{

v ∈ VR ∪ {g} :
∑

b
v

nb is odd
}

,

and the weight functions wh
r,R(n) and wR(n) as

wh
r,R(n) =

∏

b∈BR

(Jb/Tc)nb

nb!

∏

b′∈Gr

(h/Tc)nb′

nb′ !
, wR(n) = w0

r,R(n).

Then, we obtain the following random-current representation (cf. Fig. 1):

Zh
r,R =

∑

∂n=∅

wh
r,R(n), ZR =

∑

∂n=∅

wR(n),

and for x, y ∈ VR,

〈σx〉h
r,R =

∑

∂n={x,g}

wh
r,R(n)
Zh

r,R

, 〈σxσy〉R =
∑

∂n={x}�{y}

wR(n)
ZR

,

where � represents a symmetric difference.
Given a current configuration n = {nb}, we say that x is n-connected to

y, denoted x←→
n

y if either x = y ∈ VR ∪ {g} or there is a path from x to y
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consisting of bonds b ∈ BR ∪ Gr with nb > 0. For A ⊂ VR ∪ {g}, we also say
that x is n-connected to y in A, denoted x←→

n
y in A, if either x = y ∈ A or

there is a path from x to y consisting of bonds b ⊂ A with nb > 0.
Given a subset A ⊂ VR, we define

WA(m) =
∏

b⊂A

(Jb/Tc)mb

mb!
, ZA =

∑

∂m=∅

WA(m).

The most important feature of the random-current representation is the so-
called source-switching lemma (e.g., [25, Lemma 2.3]). We state the version we
use the most in this paper as below. This is an immediate consequence from the
source-switching lemma.

Lemma 1 (Consequence from the source-switching lemma, [25]). For
any subsets A ⊂ VR and B ⊂ VR ∪ {g}, any x, y ∈ VR and any function f on
current configurations,

∑

∂n=B
∂m=∅

wh
r,R(n)WA(m)1{x←→

n +m
y in A} f(n + m)

=
∑

∂n=B�{x}�{y}
∂m={x}�{y}

wh
r,R(n)WA(m) f(n + m).

For a proof, we refer to [25, Lemma 2.3].

2.2 A Correlation Inequality

The main technical vehicle in the proof of Theorem 1 is the following correlation
inequality that relates 〈σo〉+r to the sum of 2-spin expectations.

Proposition 1. For the ferromagnetic Ising model,

〈σo〉+r ≥

( ∑

x∈∂Vr

〈σoσx〉
)2

∑

x,y∈∂Vr

〈σoσx〉〈σxσy〉 +
∑

u∈Z
d

x,y∈∂Vr

〈σoσu〉〈σuσx〉〈σuσy〉〈σo〉+dist(u,∂Vr)

. (6)

Compare this with the correlation inequality (4) for percolation. The extra
factor in the denominator of (6), 〈σo〉+dist(u,∂Vr)

, will eventually be the key to
obtain the optimal mean-field bound on the Ising 1-arm exponent.

Proof of Proposition 1. The proof is carried out in four steps.
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Step 1: The second-moment method. Let

Xr(n) =
∑

x∈∂Vr

1{o←→
n

x in VR}.

Then, by the Schwarz inequality, we obtain

∑

∂n={o,g}
∂m=∅

wh
r,R(n)
Zh

r,R

wR(m)
ZR

Xr(n + m)

≤
( ∑

∂n={o,g}

wh
r,R(n)
Zh

r,R

︸ ︷︷ ︸
=〈σo〉hr,R

∑

∂m=∅

wR(m)
ZR

︸ ︷︷ ︸
=1

)1/2

×
( ∑

∂n={o,g}
∂m=∅

wh
r,R(n)
Zh

r,R

wR(m)
ZR

Xr(n + m)2
)1/2

.

By Lemma 1, we can rewrite the left-hand side as

∑

x∈∂Vr

∑

∂n={o,g}
∂m=∅

wR(n)
Zr,R

wR(m)
ZR

1{o←→
n +m

x in VR}

=
∑

x∈∂Vr

∑

∂n={x,g}
∂m={o,x}

wh
r,R(n)
Zh

r,R

wR(m)
ZR

=
∑

x∈∂Vr

〈σx〉h
r,R 〈σoσx〉R. (7)

As a result, we obtain

〈σo〉h
r,R ≥

( ∑

x∈∂Vr

〈σx〉h
r,R 〈σoσx〉R

)2

∑

∂n={o,g}
∂m=∅

wh
r,R(n)
Zh

r,R

wR(m)
ZR

Xr(n + m)2
. (8)

Step 2: Switching sources. Next, we investigate the denominator of the right-
hand side of (8), which equals

∑

x,y∈∂Vr

∑

∂n={o,g}
∂m=∅

wh
r,R(n)
Zh

r,R

wR(m)
ZR

1{o←→
n +m

x, y in VR}.
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The contribution from the summands x = y may be rewritten as in (7). Similarly,
for the case of x �= y, we use Lemma 1 to obtain

∑

x,y∈∂Vr

(x�=y)

∑

∂n={o,g}
∂m=∅

wh
r,R(n)
Zh

r,R

wR(m)
ZR

1{o←→
n +m

x, y in VR}

=
∑

x,y∈∂Vr

(x�=y)

∑

∂n={x,g}
∂m={o,x}

wh
r,R(n)
Zh

r,R

wR(m)
ZR

1{o←→
n +m

y in VR}. (9)

For the event o←→
n +m

y in VR to occur under the source constraint ∂n = {x, g},

∂m = {o, x}, either one of the following must be the case:

(i) o←→
m

y.

(ii) o �←→
m

y and ∃u ∈ Cm (o) ≡ {v ∈ VR : o←→
m

v} that is (n+m′)-connected to

y in VR \ Cm (o), where m′ is the restriction of m on bonds b ⊂ VR \ Cm (o).

Case (i) is easy; by Lemma 1, the contribution to (9) is bounded as

∑

x,y∈∂Vr

(x�=y)

∑

∂n={x,g}

wh
r,R(n)
Zh

r,R

︸ ︷︷ ︸
=〈σx〉hr,R≤1

∑

∂m={o,x}

wR(m)
ZR

1{o←→
m

y}

≤
∑

x,y∈∂Vr

(x�=y)

∑

∂m={o,x}
∂l=∅

wR(m)
ZR

wR(l)
ZR

1{o←→
m +l

y}

=
∑

x,y∈∂Vr

(x�=y)

∑

∂m={x,y}

wR(m)
ZR

︸ ︷︷ ︸
=〈σxσy〉R

∑

∂l={o,y}

wR(l)
ZR

︸ ︷︷ ︸
=〈σoσy〉R

. (10)

Step 3: Conditioning on clusters. Case (ii) is a bit harder and needs extra care.
Here we use the conditioning-on-clusters argument. First, by conditioning on
Cm (o), we can rewrite the contribution to (9) from case (ii) as

∑

u∈VR
x,y∈∂Vr

(x�=y)

∑

A⊂VR

(o,u,x∈A)

∑

∂n={x,g}
∂m={o,x}

wh
r,R(n)
Zh

r,R

wR(m)
ZR

×1{Cm (o) = A} 1{u ←→
n +m ′

y in VR \ A}. (11)
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Then, the sum over the current configurations in (11) can be rewritten as

∑

∂m={o,x}

WA(m)ZVR\A

ZR
1{Cm (o) = A}

×
∑

∂n={x,g}
∂m ′=∅

wh
r,R(n)
Zh

r,R

WVR\A(m′)
ZVR\A

1{u ←→
n +m ′

y in VR \ A}.

Now, by using Lemma 1, the above expression is equal to

∑

∂m={o,x}

WA(m)ZVR\A

ZR
1{Cm (o) = A}

×
∑

∂n={u,x,y,g}

wh
r,R(n)
Zh

r,R

︸ ︷︷ ︸
=〈σuσxσy〉hr,R

∑

∂m ′={u,y}

WVR\A(m′)
ZVR\A

︸ ︷︷ ︸
=〈σuσy〉VR\A

,

where 〈σuσy〉VR\A is the 2-spin expectation on the vertex set VR \ A under the
free-boundary condition, and is bounded by 〈σuσy〉R due to monotonicity. As a
result, we obtain

(11) ≤
∑

u∈VR
x,y∈∂Vr

(x�=y)

〈σuσxσy〉h
r,R 〈σuσy〉R

×
∑

A⊂VR

(o,u,x∈A)

∑

∂m={o,x}

WA(m)ZVR\A

ZR
1{Cm (o) = A}

=
∑

u∈VR
x,y∈∂Vr

(x�=y)

〈σuσxσy〉h
r,R 〈σuσy〉R

∑

∂m={o,x}

wR(m)
ZR

1{o←→
m

u}

≤
∑

u∈VR
x,y∈∂Vr

(x�=y)

〈σuσxσy〉h
r,R 〈σuσy〉R

∑

∂m={o,x}
∂l=∅

wR(m)
ZR

wR(l)
ZR

1{o←→
m +l

u}

=
∑

u∈VR
x,y∈∂Vr

(x�=y)

〈σuσxσy〉h
r,R 〈σuσy〉R

∑

∂m={u,x}

wR(m)
ZR

︸ ︷︷ ︸
=〈σuσx〉R

∑

∂l={o,u}

wR(l)
ZR

︸ ︷︷ ︸
=〈σoσu〉R

, (12)

where, in the last line, we have used Lemma 1 again.
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Step 4: Conclusion. Summarizing (8), (10) and (12), we arrive at

〈σo〉h
r,R ≥

( ∑
x∈∂Vr

〈σx〉h
r,R 〈σoσx〉R

)2

∑
x,y∈∂Vr

〈σoσx〉R 〈σxσy〉R +
∑

u∈VR
x,y∈∂Vr

〈σoσu〉R 〈σuσx〉R 〈σuσy〉R 〈σuσxσy〉h
r,R

.

Now we take h ↑ ∞ in both sides. In this limit, the spins on ∂Vr take on
+1. Moreover, by Griffiths’ inequality, we have limh↑∞〈σuσxσy〉h

r,R = 〈σu〉∞
r,R ≤

〈σo〉+dist(u,∂Vr)
. Therefore,

〈σo〉+r ≥

( ∑
x∈∂Vr

〈σoσx〉R

)2

∑
x,y∈∂Vr

〈σoσx〉R 〈σxσy〉R +
∑

u∈VR
x,y∈∂Vr

〈σoσu〉R 〈σuσx〉R 〈σuσy〉R 〈σo〉+
dist(u,∂Vr)

.

Taking R ↑ ∞, we finally obtain (6). ��

2.3 Proof of the Main Theorem

Proof of Theorem 1. We proceed indirectly and assume, by contradiction, that
(3) is false. Then there exist a constant K > 0 and a monotone sequence (rk)k∈N

diverging to ∞ such that

〈σo〉+rk
≤ Kr

−(1+ε)
k (13)

whenever k is large enough.
We are starting from Proposition 1. We estimate every term in the numerator

and the denominator of (6) using (1). Firstly, the numerator of (6) is of the order
r2 since

∑

x∈∂Vr

〈σoσx〉 �
∑

x∈∂Vr

|x|2−d � rd−1r2−d = r.

Secondly, the first term in the denominator is of order O(r2) since
∑

x,y∈∂Vr

〈σoσx〉〈σxσy〉 �
∑

x∈∂Vr

‖|x‖|2−d
∑

y∈∂Vr

‖|x − y‖|2−d � rd−1r2−dr = r2,

where we have used ‖| · ‖| = | · | ∨ 1 (cf. below (4)). The second term in the
denominator is the dominant one. To this end, we fix a sequence rk satisfying
(13). We split the sum over u into three cases: (i) |u| < rk/2, (ii) rk/2 ≤ |u| <
3rk/2, (iii) 3rk/2 ≤ |u|, and show that it is O(rk

3) for any ε > 0.
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Case (i):

∑

|u|<rk/2
x,y∈∂Vrk

‖|u‖|2−d‖|u − x‖|2−d‖|u − y‖|2−d
∥∥∣∣rk − |u|∥∥∣∣−(1+ε)

� r
2(2−d)−(1+ε)
k

∑

x,y∈∂Vrk

∑

|u|<rk/2

‖|u‖|2−d

︸ ︷︷ ︸
�r

2(d−1)+2
k

� r3−ε
k .

Case (ii):

∑

rk/2≤|u|<3rk/2
x,y∈∂Vrk

|u|2−d‖|u − x‖|2−d‖|u − y‖|2−d
∥∥∣∣rk − |u|∥∥∣∣−(1+ε)

� r2−d
k

∑

rk/2≤|u|<3rk/2

∥∥∣∣rk − |u|∥∥∣∣−(1+ε) ∑

x∈∂Vrk

‖|u − x‖|2−d
∑

y∈∂Vrk

‖|u − y‖|2−d

︸ ︷︷ ︸
�r2

k

� r4−d
k

∫ 3rk/2

rk/2

‖|rk − l‖|−(1+ε)ld−1dl

� r3k

∫ rk/2

0

‖|l‖|−(1+ε)dl � rk
3.

Case (iii): By the Schwarz inequality,
∑

|u|≥3rk/2
x,y∈∂Vrk

|u|2−d|u − x|2−d|u − y|2−d(|u| − rk)−(1+ε)

� r
2−d−(1+ε)
k

∑

x,y∈∂Vrk

√ ∑

|u|≥3rk/2

|u − x|4−2d

√ ∑

|u|≥3rk/2

|u − y|4−2d

︸ ︷︷ ︸
�r

2(d−1)+4−d
k

� r3−ε
k .

Plugging these estimates into the bound of Proposition 1 obtains

〈σo〉+rk
≥ C

rk
2

rk
2 + rk

3
� r−1

k

for any large k and for some C (independent of k), which contradicts (13), and
(3) follows.
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The claim ρ ≤ 1 follows straightforwardly: Suppose ρ > 1+ ε for some ε > 0,
then there exists a sequence (rk)k∈N such that

log 〈σo〉+rk

log rk
< −1 − ε,

and this contradicts (3). ��
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1 Introduction

Low temperature three dimensional equilibrium crystal shapes exhibit flat facets,
see e.g. [7,8,31]. It is known that lattice oriented low temperature microscopic
interfaces stay flat under Dobrushin boundary conditions [17]. But the L1-theory,
which is the base of the microscopic justification of Wulff construction [2,3,15]
in three and higher dimensions, does not directly address fluctuations of micro-
scopic shapes on scales smaller than the linear size of the system. In particular,
the existence and the microscopic structure of facets remains an open question
even at very low temperatures.

In a sense, this issue is complementary to a large body of works, see for
instance [14,16,22,30] and references to later papers, and also a recent review
[32], which focus on study of the corners of zero or low temperature microscopic
crystals.

For low temperature 2 + 1 SOS (solid on solid) interfaces under canonical
constraints on the volume below the microscopic surface, existence of flat micro-
scopic facets was established in [4]. Here we consider facet formation for a SOS
model coupled to high and low density bulk Bernoulli fields which are supposed
to mimic coexisting phases of the three dimensional model.

The phenomenon of droplet condensation in the framework of the Ising model
was first described in the papers [19,20]. There it was considered the Ising model
at low temperature β−1, occupying a d-dimensional box T d

N of the linear size
2N with periodic boundary conditions. The ensemble was the canonical one: the
total magnetization,

MN =
∑

σt,

was fixed. In case MN = m∗ (β)
∣∣T d

N

∣∣ , where m∗ (β) > 0 is the spontaneous
magnetization, the typical configuration looks as a configuration of the (+)-
phase: the spins are taking mainly the values +1, while the values −1 are seen
rarely, and the droplets of minuses in the box T d

N are at most of the size of
K (d) ln N. In order to observe the condensation of small (−)-droplets into a big
one it is necessary to increase their amount, which can be achieved by considering
a different canonical constraint:

MN = m∗ (β)
∣∣T d

N

∣∣− bN ,

bN > 0. It turns out that if bN/
∣∣T d

N

∣∣ d
d+1 → 0 as N → ∞, then in the corre-

sponding canonical ensemble all the droplets are still microscopic, not exceeding
K (d) ln N in linear size. On the other hand, once lim infN→∞ bN/

∣∣T d
N

∣∣ d
d+1 > 0,

the situation becomes different: among many (−)-droplets there is one, D, of the
linear size of the order of (bN )1/d ≥ N

d
d+1 , while all the rest of the droplets are

still at most logarithmic. Therefore bN ∼
∣∣T d

N

∣∣ d
d+1 can be called the condensation

threshold, or dew-point.
When bN grows beyond the condensation threshold, the big droplet D grows

as well. To study this growth process, or specifically to try to get an insight of
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the process of formation of new atomic-scale layers on microscopic facets, we
have suggested in our paper “Ising model fog drip: the first two droplets” [24] a
simplified growth model, where one puts the observer on the surface S of D and
studies the evolution of this surface S as the volume of D grows.

It was argued in [24] that the evolution of S proceeds through the spontaneous
creations of extra monolayers. Each new monolayer has one-particle thickness,
while the breadth of the k-th monolayer is ∼ ckN, with ck ≥ ccrit = ccrit (β) > 0.
It then grows in breadth for some time, until a new monolayer is spontaneously
created at its top, of the size of ck+1N.

In [24] we were able to analyze this process only for the first two monolayers.
Our technique at this time was not sufficient, and we were unable to control
the effect of the interaction between the two monolayers when their boundaries
come into contact and start to influence each other. This technique was later
developed in our paper [25], so we are able now to conclude our studies. The
present paper thus contains the material of what we have promised in [24] to
publish under the provisional title “Ising model fog drip, II: the puddle”.

In the present work we can handle any finite number of monolayers. What
we find quite interesting is that the qualitative picture of the process of growth
of monolayers changes, as k increases. Namely, for the few initial values of k =
1, 2, ..., kc the size ckN of the k-th monolayer at the moment of its creation is
strictly smaller than the size of the underlying (k − 1)-th layer. Thus, the picture
is qualitatively the same as that of the lead crystal - there is an extensive physical
literature on the latter subject, for instance see Fig. 2 in [5] and discussions in
[6,21]. However, for k > kc this is not the case any more, and the size ckN is
exactly the same as the size of the underlying (k − 1)-th layer at the creation
moment.

Still, creation of each new layer k bears a signature of first order transition -
at the moment of creation all the underlying layers shrink. This transition resem-
bles spontaneous creation of mesoscopic size droplets in two-dimensional Ising
model [1], and as in the latter work it is related to first order transitions in the
underlying variational problem.

Our picture has to be compared with a similar one, describing the layer for-
mation in the SOS model above the wall, studied in a series of works [10–12].
Unlike our model, all the layers of the SOS surface above the wall have different
asymptotic shapes. The reason is that the repulsion from the wall results in dif-
ferent area tilts for different layers there, and, accordingly, gives rise to different
solutions of the corresponding variational problem. Another important difference
is that in the SOS model [10] one never sees the top monolayer detached from
the rest of them, as in the model we consider. Nevertheless, we believe that in
our model with k monolayers the fluctuations of their boundaries in the vicinity
of the (vertical) wall are, as in the case of entropic repulsion [11], of the order of
N1/3, and their behavior is given, after appropriate scaling, by k non-intersecting
Ferrari-Spohn diffusions [23], as in [26,29]. See [28] for a review.
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2 The Model and the Results

2.1 The Model

We will study the following simple model of facets formation on interfaces
between two coexisting phases which was introduced in [24]: The system is con-
fined to the 3D box

ΛN = BN ×
{

−N + 1
2

,−N − 1
2

, ...,
N − 1

2
, N +

N + 1
2

}
,

where N ∈ 2N is even, BN is a two-dimensional N × N box;

BN = {−N, . . . , N}2 = NB1 ∩ Z
2,

and B1 = [−1, 1]2. The interface Γ between two phases is supposed to be an
SOS-type surface; it is uniquely defined by a function

hΓ : B̊N →
{

−N

2
,−N

2
+ 1, ...,

N

2

}
, (1)

where B̊N is the interior of BN . We assume that the interface Γ is pinned at
zero height on the boundary ∂BN , that is hΓ ≡ 0 on ∂BN . Such a surface Γ
splits ΛN into two parts; let us denote by VN (Γ) and SN (Γ) the upper and the
lower halves. We suppose that Γ separates the low density phase (vapor) in the
upper half of the box from the high density phase (solid) in the lower half. This
is modeled in the following fashion: First of all, the marginal distribution of Γ
obeys the SOS statistics at an inverse temperature β. That is we associate with
Γ a weight,

wβ(Γ) = exp

{
−β
∑

x∼y

|hΓ(x) − hΓ(y)|
}

, (2)

where we extended hΓ ≡ 0 outside BN , and the sum is over all unordered pairs
of nearest neighbors of Z

d.
Next, Γ is coupled to high and low density Bernoulli bulk fields: Let 0 < pv =

pv(β) < ps = ps(β) < 1. A relevant choice of pv, ps with a simplification of the
three dimensional Ising model in mind would be pv(β) = e−6β = 1 − ps(β). In
the sequel we shall assume1

lim inf
β→∞

1
β

log (min {pv(β), 1 − ps(β)}) > −∞. (3)

At each site i ∈ VN we place a particle with probability pv, while at each site
i ∈ SN we place a particle with probability ps. Alternatively, let {ξv

i } and {ξs
i }

be two independent collection of Bernoulli random variables with parameters pv

and ps. Then the empirical field of particles given interface Γ is
∑

i∈VN (Γ)

ξv
i δi +

∑

j∈SN (Γ)

ξs
j δj .

1 Actually, main results hold even with faster decay than (3).
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All together, the joint distribution of the triple (Γ, ξv, ξs) is given by

PN,β (Γ, ξv, ξs) ∝ wβ(Γ)
∏

i∈VN

p
ξv

i
v (1 − pv)1−ξv

i

∏

j∈SN

p
ξs

j
s (1 − ps)

1−ξs
j . (4)

We denote the total number of particles in vapor and solid phases, and total
number of particles in the system as

Ξv =
∑

i∈VN (Γ)

ξv
i , Ξs =

∑

j∈SN (Γ)

ξs
j and ΞN = Ξv + Ξs

respectively. The conditional distributions of Ξv and Ξs given Γ are binomial
Bin (|VN |, pv) and Bin (|SN |, ps).

By the definition of the model, the expected total number of particles

EN,β (ΞN ) =
ps + pv

2
|ΛN | ≡ ρβN3.

Formation of facets is modeled in the following way: Consider

P
A
N,β ( · ) = PN,β

(
·
∣∣ΞN ≥ ρβN3 + AN2

)
. (5)

We claim that the model exhibits a sequence of first order transitions as A
in (5) varies. The geometric manifestation of these transitions is the sponta-
neous creation of macroscopic size monolayers. In [24] we have investigated
the creation of the first two monolayers. The task of the current paper is to
provide an asymptotic (as N → ∞) description of typical surfaces Γ under
PN,β

(
·
∣∣ ΞN ≥ ρβN3 + AN2

)
for any A fixed.

To study this conditional distribution we rely on Bayes rule,

P
A
N,β (Γ) =

PN,β

(
ΞN ≥ ρβN3 + AN2

∣∣ Γ
)

PN,β (Γ)
∑

Γ′ PN,β

(
ΞN ≥ ρβN3 + AN2

∣∣ Γ′)PN,β (Γ′)
.

The control over the conditional probabilities PN,β

(
·
∣∣ Γ
)

comes from volume
order local limit theorems for independent Bernoulli variables, whereas a-priori
probabilities PN,β (Γ) are derived from representation of Γ in terms of a gas of
non-interacting contours. Models with bulk fields give an alternative approxi-
mation of interfaces in low temperature 3D Ising model, and they enjoy certain
technical advantages over the usual SOS model with weights wβ(Γ) (see (42)).
In particular, volume order limit results enable a simple control over the phase
of intermediate contours.

2.2 Heuristics and Informal Statement of the Main Result

Let us describe the heuristics behind the claimed sequence of first order tran-
sitions: To each surface Γ corresponds a signed volume α(Γ). In terms of the
height function hΓ which was defined in (1),

α(Γ) =
∫ ∫

hΓ(x, y)dxdy.



204 D. Ioffe and S. Shlosman

Main contribution to α(Γ) comes from large microscopic facets, which are
encoded by large microscopic level lines Γ1, . . . Γ�;

α(Γ) ≈
�∑

1

a (Γi) = N2
�∑

1

a

(
1
N

Γi

)
, (6)

where a (∗) stands for the area. The notions of level lines are defined and dis-
cussed in Sect. 4. Locally large level lines Γ1, . . . ,Γ� have structure of low tem-
perature Ising polymers, and they give rise to a two-dimensional surface tension
τβ . As we shall explain below the a-priori probability of creating surface with a
prescribed volume aN2 is asymptotically given by

log PN,β

(
α(Γ) = aN2

)
≈ −Nτβ(a), (7)

where τβ(a) is the minimal surface tension of a compatible collection of simple
curves γ1, . . . , γ� ⊂ B1 with total area

∑
i a(γi) = a. The notion of compatibility

is explained in the beginning of Sect. 3, which is devoted to a careful analysis of
the minimization problem we consider here. In fact the only relevant compatible
collections happen to be ordered stacks

γ̊� ⊆ γ̊2 ⊆ · · · ⊆ γ̊1 ⊆ B1. (8)

Informally, the asymptotic relation (7) is achieved when rescaled 1
N Γi micro-

scopic level lines stay close to optimal γi-s. On the other hand, the presence of
Γ-interface shifts the expected number of particles in the bulk by the quantity
Δβα(Γ), where Δβ = (ps − pv). That is,

EN,β

(
ΞN

∣∣Γ
)

= ρβN3 + Δβα(Γ).

Therefore, in view of local limit asymptotics for bulk Bernoulli fields,

log PN,β

(
ΞN ≥ ρβN3 + AN2

∣∣α(Γ) = aN2
)

≈ − (AN2 − ΔβaN2)2

2N3Rβ

= −N
(δβ − a)2

2Dβ
, (9)

where

Rβ := 2 (ps(1 − ps) + pv(1 − pv)) , Dβ :=
Rβ

Δ2
β

and δβ := A/Δβ . (10)

Consequently, the following asymptotic relation should hold:

1
N

log PN,β

(
Ξ ≥ ρβN3 + AN2

)
≈ −min

a

{
(δβ − a)2

2Dβ
+ τβ(a)

}
, (11)

and, moreover, if a∗ is the unique minimizer for the right hand side of (11), then
the conditional distribution log PN,β

(
·
∣∣Ξ ≥ ρβN3 + AN2

)
should concentrate

on surfaces Γ which have an optimal volume close to a∗N2 or, in view of (6)
and (7) whose rescaled large level lines 1

N Γ1, . . . ,
1
N Γ� are macroscopically close

to the optimal stack γ̊∗
� ⊆ · · · ⊆ γ̊∗

1 which produces τβ(a∗).
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Theorem A. Assume that bulk occupation probabilities pv and ps satisfy (3).
Then there exists β0 < ∞ such that for any β > β0 there exists a sequence
of numbers 0 < A1(β) < A2(β) < A3(β) < . . . and a sequence of areas
0 < a−

1 (β) < a+
1 (β) < a−

2 (β) < a+
2 (β) < . . . which satisfies properties A1

and A2 below:
A1. For any A ∈ [0, A1) the minimizer in the right hand side (11) (with
δβ = A/Δβ as in (10)) is a∗ = 0 which, in terms of contours in (8) corre-
sponds to the empty stack. For any � = 1, 2, . . . and for any A ∈ (A�, A�+1) the
unique minimizer a∗ in the right hand side of (11) satisfies a∗ ∈ (a−

� , a+
� ), and

it corresponds to a unique, up to compatible shifts within B1, stack of exactly
�-contours γ̊∗

� ⊆ · · · ⊆ γ̊∗
1 ⊆ B1.

A2. For any A ∈ [0, A1) there are no large level lines (no microscopic facets, that
is Γ stays predominately flat on zero-height level) with P

A
N,β-probability tending

to one. On the other hand, for any � = 1, 2, . . . and for any A ∈ (A�, A�+1), there
are exactly � microscopic facets of Γ with P

A
N,β-probability tending to one and,

moreover, the rescaled large level lines 1
N Γ1, . . . ,

1
N Γ� concentrate in Hausdorff

distance dH near the optimal stack {γ∗
1 , . . . , γ∗

� }, as described in part A1 of the
Theorem, in the following sense: For any ε > 0,

lim
N→∞

P
A
N,β

(
�−1∑

i=1

dH

(
1
N

Γi, γ
∗
i

)
+ min

x:x+γ∗
� ⊂B1

dH

(
1
N

Γ�, x + γ∗
�

)
≥ ε

)
= 0.

2.3 Structure of the Paper

Section 3 is devoted to a careful analysis of the multi-layer minimization problem
in the right hand side (11). Our results actually go beyond A1 in Theorem A,
namely we give a rather complete description of optimal stacks {γ∗

1 , . . . , γ∗
� } in

terms of Wulff shapes and Wulff plaquettes associated to surface tension τβ , and
in particular we explain geometry behind the claimed infinite sequence of first
order transitions.
The notions of microscopic contours and level lines are defined in Sect. 4.
The surface tension τβ is defined in the very beginning of Sect. 5.
The proof of part A2 of Theorem A, or more precisely the proof of the corre-
sponding statement for the reduced model of large contours, Theorem C in the
end of Sect. 4, is relegated to Sect. 5.

Throughout the paper we rely on techniques and ideas introduced and devel-
oped in [18] and [25]. Whenever possible we only sketch proofs which follow
closely the relevant parts of these papers.

2.4 Some Notation

Let us introduce the following convenient notation: Given two indexed families
of numbers {aα} and {bα} we shall say that aα � bα uniformly in α if there
exists C such that aα ≤ Cbα for all indices α. Furthermore, we shall say that
aα

∼= bα if both aα � bα and bα � aα hold. Finally, the family {aα,N} is oN (1)
if supα |aα,N | tends to zero as N tends to infinity.
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3 The Variational Problem

The variational problems we shall deal with are constrained isoperimetric type
problems for curves lying inside the box B1 = [−1, 1]2 ⊂ R

2.
Let τβ be a norm on R

2 which possesses all the lattice symmetries of Z
2. For

a closed piecewise smooth Jordan curves (called loops below) γ ⊂ B1 we define
a(γ) to be the area of its interior

◦
γ and τβ(γ) to be its surface tension,

τβ(γ) =
∫

γ

τβ(ns)ds.

A finite family L = {γ1, γ2, . . . , γn} ⊂ B1 of loops is said to be compatible if

∀ i �= j either
◦
γi ∩ ◦

γj = ∅ or
◦
γi ⊆ ◦

γj or
◦
γj ⊆ ◦

γi.

Thus compatible families have a structure of finite number of nested stacks
of loops. Given Dβ > 0 consider the following family, indexed by δ > 0, of
minimization problems:

min
L

Eβ (L |δ) := min
L

{
(δ − a(L))2

2Dβ
+ τβ(L)

}
, (VPδ)

where
a (L) =

∑

γ∈L
a (γ) and τβ(L) =

∑

γ∈L
τβ(γ)

3.1 Rescaling of (VPδ).

Let e be a lattice direction. Set

v =
δ

τβ(e)Dβ
, σβ = Dβτβ(e) and τ(·) =

τβ(·)
τβ(e)

.

Since

Eβ (L |δ) =
(δ − a(L))2

2Dβ
+ τβ(L) =

δ2

2Dβ
+ τβ(e)

{
−va(L) + τ(L) +

a(L)2

2σβ

}
,

we can reformulate the family of variational problems (VPδ) as follows: for a ≥ 0
define

τ(a) = min {τ(L) : a(L) = a} .

Then study

min
a≥0

{
−va + τ(a) +

a2

2σβ

}
. (VPv)

The problem (VPv) has a clear geometric interpretation: we want to find
a = a(v) ≥ 0 such that the straight line with slope v is the support line at
a(v) to the graph a �→ τ(a) + a2

2σβ
on [0,∞).
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3.2 Wulff Shapes, Wulff Plaquettes and Pptimal Stacks

By construction τ inherits lattice symmetries of Z
d and τ (e) = 1. In this case,

the Wulff shape
W � ∂

{
x : x · n ≤ τ(n) ∀ n ∈ S

1
}

has the following properties: Its radius (half of its projection on the x or y axis)
equals to 1. Its area a(W) satisfies

a(W) ≡ w =
1
2
τ(W),

For any r > 0 the radius, the area and the surface tension of the scaled curve
rW equal to r, r2w and 2rw respectively. The curves rW are (modulo shifts)
unique minimizers of τ(γ) restricted to the loops γ with area a(γ) = r2w :

2rw = τ(rW) = min
γ:a(γ)=r2w

τ(γ).

Since τ(e) = 1, the maximal radius and, accordingly, the maximal area of the
rescaled Wulff shape which could be inscribed into the box B1 are precisely 1
and w. For b ∈ [0, w] let Wb be the Wulff shape of area b. By convention, Wb is
centered at the origin. Its radius rb and its surface tension τ(Wb) are given by

rb =

√
b

w
and τ(Wb) = 2rbw = 2

√
bw.

For b ∈ (w, 4] the optimal (minimal τ(γ)) loop γ ⊆ B1 with a(γ) = b is what we
call the Wulff plaquette Pb. It is defined as follows. One takes four Wulff shapes
of radius r ≤ 1 and puts them in four corners of B1, so that each touches two
corresponding sides of B1; then, one takes the convex envelope of the union of
these four Wulff shapes. We will call such Wulff plaquette as having the radius
r. It contains four segments of length 2(1 − r), and so its surface tension is
8 (1 − r) + 2wr. Its area is 4 − (4 − w) r2. In this way, the Wulff plaquette Pb of
area b ∈ [w, 4] has the radius rb and surface tension τ(Pb) given by

rb =

√
4 − b

4 − w
and τ(Pb) = 8 − 2rb(4 − w) = 8 − 2

√
(4 − w)(4 − b). (12)

Remark 1. By convention Ww = Pw. Also note that both in the case of Wulff
shapes and Wulff plaquettes,

d
db

τ (Wb) =
1
rb

and
d
db

τ (Pb) =
1
rb

, (13)

for any b ∈ (0, w) and, respectively, for any b ∈ (w, 4).

Definition 1. For b ∈ [0, 4] define the optimal shape

Sb = Wb1b∈[0,w) + Pb1b∈[w,4].
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Let now L be a family of compatible loops. For any x ∈ B1 let nL(x) be the
number of loops γ ∈ L such that x ∈ γ̊. The areas b� = |x ∈ B1 : nL(x) ≥ �| form
a non-increasing sequence. Therefore L∗ = {Sb1 ,Sb2 , . . .} is also a compatible
family. Obviously a(L∗) = a(L), but τ(L∗) ≤ τ(L). Consequently, we can restrict
attention only to compatible families which contain exactly one stack of optimal
shapes Sb�

.
Furthermore, (13) implies that for each � ∈ N optimal �-stacks could be only

of two types: Let a ∈ R
+.

Definition 2 (Stacks L1
�(a) of type 1). These contain � − 1 identical Wulff

plaquettes and a Wulff shape, all of the same radius r = r1,�(a), which should be
recovered from

a = (� − 1)(4 − (4 − w)r2) + wr2 = 4(� − 1) − r2 (�(4 − w) − 4) . (14)

That is, if �(4 − w) �= 4, then

r1,�(a) =

√
4(� − 1) − a

4(� − 1) − w
. (15)

Remark 2. Of course, if 4
4−w ∈ N, then (14) does not determine r for �∗ = 4

4−w .
In other words in this case for any r ∈ [0, 1] the stack of (�∗ −1) Wulff plaquettes
of radius r and the Wulff shape of the very same radius r on the top of them has
area 4(�∗ −1) and surface tension 8(�∗ −1). This introduces a certain degeneracy
in the problem, but, upon inspection, the inconvenience happens to be of a purely
notational nature, and in the sequel we shall ignore this case, and assume that
the surface tension τ satisfies

�∗ :=
4

4 − w
�∈ N. (16)

We proceed to work under assumption (16). The range Range(L1
�) of areas a,

for which �-stacks of type 1 are defined is:

Range(L1
�) =

{
[4(� − 1), �w], if � < �∗,
[�w, 4(� − 1)], if � > �∗.

In either of the two cases above the surface tension

τ
(
L1

�(a)
)

= 8(� − 1) + 2sign(�∗ − �)
√

(4(� − 1) − a)(4(� − 1) − w). (17)

In view of (15) and (16)

d
da

τ
(
L1

�(a)
)

=

√
4(� − 1) − w

4(� − 1) − a
=

1
r1,�(a)

. (18)



Formation of Facets 209

Definition 3 (Stacks L2
�(a) of type 2). These contain � identical Wulff pla-

quettes of radius

r2,�(a) =

√
4� − a

(4 − w)�
, (19)

as it follows from a = �(4 − (4 − w)r2). The range Range(L2
�) of areas a, for

which stacks of type 2 are defined (for a given value of � ∈ N), is:

Range(L2
�) = [�w, 4�] (20)

Substituting the value of the radius (19) into (12) we infer that the surface
tension of a stack of type 2 equals to:

τ
(
L2

�(a)
)

= 8� − 2
√

(4� − a)(4 − w)� and
d
da

τ
(
L2

�(a)
)

=
1

r2,�(a)
. (21)

Note that by definition

L1
�(4(� − 1)) = L2

�−1(4(� − 1)) and L1
�(�w) = L2

�(�w). (22)

Also for notational convenience we set L2
0(0) = ∅.

Set τ�(a) = min
{
τ
(
L1

�(a)
)
, τ
(
L2

�(a)
)}

, where we define

τ
(
Li

�(a)
)

= ∞ if a �∈ Range(Li
�) (23)

We can rewrite (VPv) as

min
a≥0,�∈N

{
−va + τ�(a) +

a2

2σβ

}
= min

a≥0,�∈N,i=1,2

{
−va + Gi

�(a)
}

, (24)

where we put

Gi
�(a) = τ

(
Li

�(a)
)

+
a2

2σβ
, i = 1, 2. (25)

3.3 Irrelevance of L1
� -stacks for � > �∗

For � > �∗,

Range(L1
�) = [�w, 4(� − 1)] ⊂ Range(L2

�) = [�w, 4�].

By the second of (22) the values of L1
� and L2

� coincide at the left end point
a = �w. On the other hand, r1

� (a) ≤ r2
� (a) for any a ∈ [�w, 4(� − 1)]. Hence, (18)

and (21) imply that τ
(
L1

�(a)
)

≥ τ
(
L2

�(a)
)

whenever � > �∗.
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3.4 Variational Problem for Stacks of Type 2.

We start solving the problem (24), by considering a simpler one:

min
a∈∪�≥0[w�,4�],�∈N0

{
−va + G2

� (a)
} Δ= min

a∈∪�≥0[w�,4�],�∈N0

Fv(�, a), (26)

where we have defined (see (21)).

Fv(�, a) = −va +
a2

2σβ
+ 8� − 2

√
(4� − a)(4 − w)�.

Recall (23) that we set G2
� (a) = ∞ whenever a �∈ Range(L2

�), as described in
(20). In this way the functions G2

� are defined on R; each one has a support line
at any slope v. In the variational problem (26) we are looking for the lowest such
support line, which is precisely the support line to the graph of G2 = min� G2

� .
For a generic slope v there is exactly one value �(v) for which the minimum is
realized. However, for certain critical values v∗ of the slope v it might happen that
the minimal support line touches the graphs of G2

� for several different �-s. As the
following theorem shows, at every such critical value v∗, the index � = �(v) of the
optimal stack G2

� jumps exactly by one unit up, that is � (v∗ + ε) = � (v∗ − ε)+1
for ε > 0 small. Furthermore, these transitions are of the first order, both in
terms of the radii and the areas of optimal stacks.

Theorem 1. There exists an increasing sequence of critical slopes 0 = v∗
0 <

v∗
1 < v∗

2 < . . . and an increasing sequence of the area values

0 = a+
0 < a−

1 < a+
1 < a−

2 < a+
1 < a−

2 < . . .

such that a±
� ∈ Range

(
L2

�

)
= [�w, 4�] for every � ∈ N, and:

1. For v ∈ [0, v∗
1) the empty stack L2

0(0) is the unique solution to (26).
2. For each � ∈ N such that v∗

� < 1 + �w
σβ

, the minimum in (26) is attained, for

all v ∈ (v∗
� , 1 + �w

σβ
), at a = a−

� = �w. The corresponding stack is L2
�(�w).

3. For the remaining values of v ∈ (v∗
� ∨ (1 + �w

σβ
), v∗

�+1), the picture is the
following: for each � ∈ N there exists a continuous increasing bijection

a� : [v∗
� ∨ (1 +

�w

σβ
), v∗

�+1] �→ [a−
� , a+

� ],

such that for each v ∈ (v∗
� ∨ (1 + �w

σβ
), v∗

�+1) the stack L2
� (a�(v)) corresponds

to the unique solution to (26).
4. At critical slopes v∗

1 , v∗
2 , . . . the transitions happen. There is a coexistence:

(v − a+
�−1)

2

2σβ
+ τ
(
L2

�−1(a
+
�−1)

)
=

(v − a−
� )2

2σβ
+ τ
(
L2

�(a
−
� )
)
.

Also, the radii of plaquettes of optimal stacks at coexistence points are increas-
ing: Set b±

� = a±
� /�. Then, b+

�−1 > b−
� , and hence

rb+�−1
< rb−

�

for every � ∈ N.
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We shall prove Theorem 1 under additional non-degeneracy assumption (16).
However, the proof could be easily modified in order to accommodate the degen-
erate case as well.

The fact that the problem should exhibit first order transitions could be
easily understood from (21). The crux of the proof below is to show that when
v increases, the number � = �(v) of layers of the corresponding optimal stack
L2

� (a�(v)) either stays the same or increases by one, and, above all, to deduce
all the results without resorting to explicit and painful computations.

Proof of Theorem 1. Let us start with the following two facts:

Fact 1. For every � ≥ 1, the function
{
G2

� (a)
}

is strictly convex. Let a� = a�(v)
be the point where a line with the slope v supports its graph. If

v ≤ d+

da

∣∣∣
a=�w

{
G2

� (a)
} (21)

=
1

r2,�(�w)
+

�w

σβ
= 1 +

�w

σβ
, (27)

then a�(v) = �w. In the remaining region v > 1+ �w
σβ

the value a�(v) is recovered
from:

v =
d
da

∣∣∣
a=a�

τ
(
L2

�(a)
)

+
a�

σβ

(21),(19)
=

√
4 − w

4 − a�/�
+

a�

σβ

Δ=
√

4 − w

4 − b�
+

�b�

σβ
. (28)

Thus, both a�(v) and b�(v) Δ= a�(v)/� are well defined for any v ∈ R. Of
course we consider only v ∈ [0,∞). If m > �, then, by definition, we have for all
v > 1 + mw

σβ
(i.e. when both curves G2

� and G2
m have tangent lines with slope v)

that

v =

√
4 − w

4 − b�(v)
+

�b�(v)
σβ

=

√
4 − w

4 − bm(v)
+

mbm(v)
σβ

. (29)

If v ∈ (1 + �w
σβ

, 1 + mw
σβ

], then bm(v) = w and

v =

√
4 − w

4 − b�(v)
+

�b�(v)
σβ

<

√
4 − w

4 − bm(v)
+

mbm(v)
σβ

, (30)

Finally, if v ≤ 1 + �w
σβ

then b�(v) = bm(v) = w, and the second inequality in (30)
trivially holds. Together (29) and (30) imply that for any v ∈ [0,∞),

am(v) > a�(v) and bm(v) ≤ b�(v). (31)

Fact 2. It is useful to think about Fv as a function of continuous variables
�, a ∈ R+. By direct inspection −

√
�(4� − a) is strictly convex on R

2
+ and thus

also on the convex sector

Dw
Δ= {(�, a) : 0 ≤ �w ≤ a ≤ 4�} ⊂ R

2
+.
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Hence, Fv is strictly convex on Dw as well. This has the following implication:
If (�1, a1) �= (�2, a2) are such that Fv(�1, a1) = Fv(�2, a2), then

Fv(�1, a1) > Fv(λ�1 + (1 − λ)�2, λa1 + (1 − λ)a2) (32)

for any λ ∈ (0, 1).

Let us go back to (26). Clearly mina≥0,�∈N0 Fv(�, a) is attained for all v, and,
furthermore (0, 0) = argmin(Fv) for all v sufficiently small. It is also clear that
(0, 0) �∈ argmin(Fv) whenever v is sufficiently large.

Therefore there exists the unique minimal values v∗
1 > 0 and �∗

1 ≥ 1, and,
accordingly the value a−

1 ∈ Range
(
L2

�∗
1

)
= [�∗

1w, 4�∗
1] satisfying the condition

Fv∗
1
(0, 0) = Fv∗

1

(
�∗
1, a

−
1

)

Let us show that �∗
1 = 1. Indeed, assume that �∗

1 > 1. But then for the value

� = 1, intermediate between � = 0 and �∗
1, we have Fv∗

1
(1,

a−
1

�∗
1

) > Fv∗
1
(0, 0), which

contradicts the convexity property (32). Hence a−
1 ∈ [w, 4). By the same strict

convexity argument,

Fv∗
1
(1, a−

1 ) = min
a

Fv∗
1
(1, a) < min

�>1,a
Fv∗

1
(�, a)

By continuity the inequality above will persist for v > v∗
1 with v −v∗

1 sufficiently
small. Also, Fv(1, a1(v)) < Fv(0, 0) for every v > v∗

1 , since the function a �→
τ
(
L2

1(a)
)

is strictly convex. This means that there exists the maximal v∗
2 > v∗

1 ,
a+
1 > a−

1 and a continuous bijection a1 : [v∗
1 , v∗

2 ] �→ [a−
1 , a+

1 ] such that (1, a(v)) =
argminFv on (v∗

1 , v∗
2).

Now we can proceed by induction. Let us define the segment [v∗
� , v∗

�+1] as
the maximal segment of values of the parameter v, for which there exist the
corresponding segment [a−

� , a+
� ] and a continuous non-decreasing function a� :

[v∗
� , v∗

�+1] �→ [a−
� , a+

� ] such that (�, a�(v)) = argminFv for v ∈ (v∗
� , v∗

�+1). (If there
are several such segments for the same value of �, we take for [v∗

� , v∗
�+1], by

definition, the leftmost one. Of course, we will show below that it can not be the
case, but we do not suppose it now.) Our induction hypothesis is that the open
segment (v∗

� , v∗
�+1) is non-empty, and that

min
m<�

min
a

Fv(m,a) > min
a

Fv(�, a), (33)

for v > v∗
� . We have already checked it for � = 1.

Clearly, (�, a) �∈ argminFv whenever v is sufficiently large. Thus, v∗
�+1 < ∞.

By induction hypothesis (33),

Fv∗
�+1

(m,a) = Fv∗
�+1

(�, a+
� ) = min Fv∗

�+1
(34)
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implies that m > �. As before, using convexity and continuity arguments we
can check that if (34) holds for some m > � and a (with (m,a) ∈ Dw) then
necessarily m = � + 1 and, furthermore,

min
a

Fv(� + 1, a) < min
m>�+1,a

Fv(m,a)

for v > v∗
�+1 with v − v∗

�+1 sufficiently small. The first part of the induction step
is justified.

Assume finally that Fv(�, a�) = Fv(� + 1, a�+1) = min Fv. Then a� < a�+1,
as it is stated in (31). By the same authority, b� ≥ b�+1, and hence rb�

≤ rb�+1 .
By convexity of both τ

(
L2

�(a)
)

and τ
(
L2

�+l(a)
)

the inequality a� < a�+1 implies
that

min
a

Fu(�, a) > min
a

Fu(� + 1, a) for any u > v.

Consequently, mina Fu(�, a) > mina Fu(� + 1, a) for any u > v∗
�+1, and we are

home. ��

3.5 Analysis of (VPv )

As we already know, �-stacks of type 1 cannot be optimal whenever � > �∗ (see
definition (16)). Let us explore what happens if � < �∗. In this case

Range(L1
�) = [4(� − 1), �w] and Range(L2

�) = [�w, 4�].

Thus, Range(L1
�) shares endpoints 4(� − 1) and �w with Range(L2

�−1) and,
respectively, Range(L2

�), and all these ranges have disjoint interiors. So, in prin-
ciple, �-stack of type 1 may become optimal. Note that by our convention, (22)
and (25),

G2
�−1(4(� − 1)) = G1

� (4(� − 1)) and G1
� (�w) = G2

� (�w),

so, for � < �∗ the two families G1
� , G2

� merge together into a single continuous
function. In fact, it is even smooth, except that the tangent to its graph becomes
vertical at endpoints 4�. Let v∗

� be the critical slope for variational problem (26),
as described in Theorem 3. By construction, there is a line l(v∗

� ) with slope v∗
�

which supports both the graphs of G2
�−1 and of G2

� (Fig. 1).

Definition 4. Let us say that the graph of G1
� sticks out below l(v∗

� ) if there
exists a ∈ Range(L1

�) such that

G1
� (a) < G2

� (a−
� ) − v∗

� (a−
� − a).

Obviously, there are optimal �-stacks of type 1 iff the graph of G1
� sticks out

below l(v∗
� ).

Proposition 1. For any � < �∗ the graph of G1
� sticks out below l(v∗

� ) iff

v∗
� < 1 +

�w

σβ
. (35)
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l(1 + (�−1)w
σβ

)

(� − 1)w 4(� − 1)

G1
�

G2
�

G2
�−1

l(v∗
� ) l(u∗

�)

a−
�ã−

� ã+� �w = a+�

Fig. 1. The graph of G1
� sticks out below l(v∗

� ). The transition slope ṽ∗
� satisfies

1 + (�−1)w
σβ

< ṽ∗
� < v∗

� < 1 + �w
σβ

.

Equivalently, this happens iff

G2
�−1(a) > G2

� (�w) − (�w − a)
(

1 +
�w

σβ

)
, (36)

for any a ∈ Range(L2
�−1) = [(� − 1)w, 4(� − 1)].

Proof. Note first of all that in view of (27), the condition (35) necessarily implies
that a−

� = �w. Consequently the fact that (35) and (36) are equivalent is straight-
forward, since by construction l(v∗

� ) supports both graphs.
Note that since d+

da G2
�−1(4(�−1)) = ∞ and since L2

�−1(4(�−1)) = L1
�(4(�−1))

the graph of G1
� has to stay above l(v∗

� ) for values of a ∈ Range(L1
�) which are

sufficiently close to 4(� − 1).
Let us compute the second derivative

d2

da
G1

� (a)
(17)
=

1
σβ

− 1
2

√
�w − (4(� − 1)
(a − 4(� − 1))3

. (37)

The expression on the right hand side above is increasing (from −∞) on
Range(L1

�). If it is non-positive on the whole interval, then the graph of G1
�

is concave and it cannot stick out. Otherwise, the graph of G1
� is convex near

the right end point �w and hence its maximal derivative on the convex part is
attained at a = �w and equals to 1+ �w

σβ
. Therefore, (35) is a necessary condition

for the graph of G1
� to stick out.
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To see that it is also a sufficient condition recall once again that v∗
� < 1 + �w

σβ

means that l(v∗
� ) supports G2

� at the left end point a = �w. But then, G1
� goes

below l(v∗
� ) for all values of a ∈ Range(L1

�) which are sufficiently close to �w,
because “the union of G1

� and G2
� ” is smooth at a = �w. In particular, it should

have a convex part. ��
Remark 3. The argument above does not imply that for � < �∗ = 4

4−w the graph
of G1

� sticks out if it has a convex part near �w. The latter is a necessary condition
which gives the following upper bound on the maximal number of layers � such
that G1

� may stick out: Let us substitute a = �w into (37):

1
σβ

− 1
2

√
�w − 4(� − 1)

(�w − 4(� − 1))3
> 0

(16)⇔ � < �∗
(
1 − σβ

8

)
.

Proposition 2. If w ≤ 2σβ, then the graph of G1
� does not stick out for any

value of � < �∗ (1 − σβ

8

)
(and hence stacks of type 1 are never optimal).

If, however, w > 2σβ, then there exists a number k∗, 1 ≤ k∗ < �∗ (1 − σβ

8

)

such that the graphs of G1
� stick out below l(v∗

� )-s for any � = 1, . . . , k∗, and they
do not stick out for � > k∗.

Proof. The proof comprises two steps.
Step 1. We claim that the graph of G1

1 sticks out below l(v∗
1) iff w > 2σβ .

Indeed, recall that l(v∗
1) is the line which passes through the origin and which

is tangent to the graph of G2
1 . Since the latter is convex and increasing, v∗

1 <
1 + w

σβ
iff

G2
1(w) < w

(
1 +

w

σβ

)
⇔ 2w +

w2

2σβ
< w +

w2

σβ
⇔ w > 2σβ ,

so the claim follows from Proposition 1.
Step 2. We claim that for any 1 ≤ m < �, if the graph of G1

� sticks out below
l(v∗

� ), then the graph of G1
m sticks out below l(v∗

m).
Assume that (36) holds. First of all take a = (� − 1)w. Recall that G2

� (�w) =
2�w + (�w)2/2σβ . Therefore,

G2
�−1 ((� − 1)w) − G2

� (�w) + w

(
1 +

�w

σβ

)
=

w2

2σβ
− w > 0. (38)

Furthermore, if we record the range a ∈ Range(L2
(�−1)) as a = (� − 1)w + c;

c ∈ [0, (4−w)(�−1)], then, in view of (38), the necessary and sufficient condition
(36) for the graph of G1

� to stick out reads as:

G2
�−1 ((� − 1)w + c) − G2

� (�w) + (w − c)
(

1 +
�w

σβ

)

=
(

w2

2σβ
− w

)
+
∫ c

0

(
d
dτ

G2
�−1 ((� − 1)w + τ) −

(
1 +

�w

σβ

))
dτ

(21)
=
(

w2

2σβ
− w

)
+
∫ c

0

(
1

r2,�−1((� − 1)w + τ)
−
(

1 +
�w

σβ

))
dτ > 0.

(39)
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for any c ∈ [0, (4 − w)(� − 1)].
Now for any k ∈ N (and τ ∈ [0, (4 − w)k]),

r2,k(kw + τ)
(19)
=

√
4k − (kw + τ)

(4 − w)k
(16)
=
√

1 − τ

(4 − w)k
.

That means that for a fixed τ the function k �→ r2,k(kw + τ) is increasing in k.
Therefore, (39) implies that,

(
w2

2σβ
− w

)
+
∫ c

0

(
1

r2,m−1((m − 1)w + τ)
−
(

1 +
mw

σβ

))
dτ > 0,

for any m = 1, . . . , � and, accordingly, any c ∈ [0, (m− 1)(4−w)]. Consequently,
(36) holds for any m ≤ �. ��

Assume now that � < �∗ and that the graph of G1
� sticks out below l(v∗

� ). This
means that there exits a range of slopes (ṽ∗

� , v∗
� ) such that for any v ∈ (ṽ∗

� , v∗
� ),

one can find a = a(v), such that L1
�(a(v)) is the unique solution to the variational

problem (VPv). By (18),

v =
1

r1,�(a(v))
+

a(v)
σβ

≥ 1 +
4(� − 1)

σβ
.

Hence, in view of Proposition 1 (and in view of the fact that by Proposition 2
the graph of G1

�−1 has to stick out as well and consequently v∗
�−1 < 1 + (�−1)w

σβ
),

ṽ∗
� > 1 +

(� − 1)w
σβ

> v∗
�−1.

Which means that in the range of slopes [1 + (�−1)w
σβ

, ṽ∗
� ) the (� − 1)-stacks of

type 2 continue to be optimal.
The structure of solutions and first order transitions in terms of optimal

layers and optimal areas is summarized in Theorem B and depicted on Fig. 2.

Theorem B. If w ≤ 2σβ, then solutions to the variational problem (VPv) are
as described in Theorem 1.

If, however, w > 2σβ, then there exists a number 1 ≤ k∗ < �∗ (1 − σβ

8

)
such

that the following happens: For every � = 1, . . . , k∗ there exists a slope ṽ∗
� ;

1 +
(� − 1)w

2σβ
< ṽ∗

� < v∗
� < 1 +

�w

2σβ
,

such that

1. The empty stack L2
0 is the unique solution to (VPv) for v ∈ [0, ṽ∗

1).
2. For every � = 1, . . . , k∗ there is an area ã−

� ∈ (4(� − 1), �w) and a contin-
uous increasing bijection ã� : [ṽ∗

� , 1 + �w
2σβ

] �→ [ã−
� , �w] such that the �-stack

L1
� (ã�(v)) of type 1 is the unique solution to (VPv) for every v ∈ (ṽ∗

� , 1+ �w
2σβ

).
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3. For every � < k∗ the �-stack L2
�(a�(v)) of type 2 is the unique solution to

(VPv) for every v ∈ (1 + �w
σβ

, ṽ∗
�+1), where a� is the bijection described in

Theorem 1.
4. The stack L2

k∗(ak∗(v)) is the unique solution to (VPv) for every v ∈ [1 +
k∗w
σβ

, vk∗+1).

5. Finally, for every � > k∗ the transition slope v∗
� ≥ 1 + �w

σβ
, and the stack

L2
�(a�(v)) of type 2 is the unique solution to (VPv) for every v ∈ (v∗

� , v∗
�+1).

ã+
k∗

w

L1
2w

L2

Lk∗ Type 2

k∗

Layers

k∗w

ã+1
ã−
1 ã−

2 ã+2 ã−
k∗

Fig. 2. For � = 1, . . . , k∗ < �∗ families L1
� of type one are optimal for a ∈ (ã−

� , �w),
whereas families L2

� of type 2 are optimal for a ∈ (�w, ã+
� ). First order transitions -

jumps in terms of number of optimal layers from � − 1 to �, and in terms of sizes of
optimal areas from ã+

�−1 to ã−
� (where we set ã+

0 = 0) - occur at transition slopes ṽ∗
� .

For � > k∗ only families of type two are optimal, and first order transitions occur as
described in Theorem 1.

4 Low Temperature Level Lines

The main contribution to the event
{
ΞN ≥ ρβN3 + AN2

}
comes from bulk fluc-

tuations and creations of macroscopic size facets (large contours - see below) of
the interface Γ. In order to formulate the eventual reduced model let us first of
all collect the corresponding notions and facts from [24].

4.1 Bulk Fluctuations

For each β fixed bulk fluctuations are governed by local limit results for sums
of Bernoulli random variables, as the linear size of the system N → ∞. Let us
record a more quantitative version of (9): For every K fixed
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log PN,β

(
ΞN = ρβN3 + AN2

∣∣Γ
)

= −N

(
δβ − α(Γ)

N2

)2

2Dβ
+ O (log N) , (40)

uniformly in A ≤ K and |α(Γ)| ≤ KN2.

4.2 Contours and Their Weights

There is a natural contour parametrization of surfaces Γ. Namely, given an inter-
face Γ and, accordingly, the height function hΓ which, by definition, is identically
zero outside Λ̊N , define the following semi-infinite subset Γ̂ of R

3,

Γ̂ =
⋃

(x,y,k)
k<hΓ(x,y)

(
(x, y, k) + Ĉ

)
,

where Ĉ = [−1/2, 1/2]3 is the unit cube. The above union is over all (x, y) ∈ Z
2

and k ∈ 1/2 + Z.
Consider now the level sets of Γ, i.e. the sets

Hk = Hk

(
Γ̂
)

=
{

(x, y) ∈ R
2 : (x, y, k) ∈ Γ̂

}
, k = −N, −N + 1, . . . , N.

We define contours as the connected components of sets ∂Hk, subject to south-
west splitting rules, see Sect. 2.1 in [25] or [18]. The length |γ| of a contour is
defined in an obvious way. Since, by construction all contours are closed self-
avoiding polygons composed of the nearest neighbor bonds of Λ∗

N , the notions of
interior int(γ) and exterior ext(γ) of a contour γ are well defined. A contour γ is
called a ⊕-contour (�-contour), if the values of the function hΓ at the immediate
exterior of γ are smaller (bigger) than those at the immediate interior of γ.

Alternatively, let us orient the bonds of each contours γ ⊆ ∂Hk in such a
way that when we traverse γ the set Hk remains to the right. Then ⊕-contours
are those which are clockwise oriented with respect to their interior, whereas
�-contours are counter-clockwise oriented with respect to their interior.

Let us say that two oriented contours γ and γ′ are compatible, γ ∼ γ′, if

1. Either int(γ) ∩ int(γ′) = ∅ or int(γ) ⊆ int(γ′) or int(γ′) ⊆ int(γ).
2. Whenever γ and γ′ share a bond b, b has the same orientation in both γ and γ′.

A family Γ = {γi} of oriented contours is called consistent, if contours of
Γ are pair-wise compatible. It is clear that the interfaces Γ are in one-to-one
correspondence with consistent families of oriented contours. The height function
hΓ could be reconstructed from a consistent family Γ = {γ} in the following way:
For every contour γ the sign of γ, which we denote as sign(γ), could be read
from it orientation. Then,

hγ(x, y) = sign(γ)χint(γ)(x, y) and hΓ =
∑

γ∈Γ

hγ , (41)

where χA is the indicator function of A.
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In this way the weights wβ(Γ) which appear in (2) could be recorded as
follows: Let Γ = {γ} be a consistent family of oriented (signed) contours, Then,

wβ(Γ) = exp

⎧
⎨

⎩−β
∑

γ∈Γ

|γ|

⎫
⎬

⎭ . (42)

In the sequel we shall assume that β is sufficiently large. By definition the weight
of the flat interface is wβ(Γ0) = 1.

4.3 Absence of Intermediate and Negative Contours

In the sequel a claim that a certain property holds for all β sufficiently large
means that one can find β0, such that it holds for all β ≥ β0.

For all β sufficiently large the following rough apriori bound holds (see (Sub-
section 6.2) in [24]): There exist positive combinatorial (that is independent of
β) constant ν such for every b0 > 0 fixed,

log PN,β

(
|α(Γ)| > bN2

)
� −νβN

√
b,

uniformly in b ≥ b0 and in N large enough. A comparison with (40) reveals that
we may fix Kβ = Kβ(A) and ignore Γ with α(Γ) ≥ KβN2. Now let the interface
Γ with α(Γ) ≤ KβN2 be given by a consistent collection of contours, and assume
that γ ∼ Γ. Of course α(Γ ∪ γ) = α(Γ) + α(γ). Then [24] there exists a constant
cβ = cβ(A) such that

− log PN,β

(
Γ ∪ γ

∣∣∣ΞN ≥ ρβN3 + AN2
)

� cβ
|γ|2
N

1sign(γ)=1 − β|γ|. (43)

Consequently, there exists εβ = εβ(A) > 0, such that we can rule out all contours
γ with ε−1

β log N ≤ |γ| ≤ εβN , and all negative contours γ with |γ| > εβN .
It is not difficult to see that (3) implies that

lim inf
β→∞

1
β

log εβ(A) > −∞

for any A fixed.

Definition 5. The notion of big and small contours depends on the running
value of excess area A, on the linear size of the system N and on the inverse
temperature β. Namely, a contour γ is said to be large, respectively small, if

|γ| ≥ εβ(A)N and, respectively, if |γ| ≤ 1
εβ(A)

log N. (44)

Since we already know that intermediate contours and large �-type contours
could be ignored, let us use P̂N,β for the restricted ensemble which contains only
⊕-type large or small contours.
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4.4 Irrelevance of Small Contours

Let Γ = Γl ∪ Γs is a compatible collection of contours with Γl being the corre-
sponding set of large contours of Γ and, accordingly, Γs being the collection of
small contours of Γ. Clearly,

log PN,β

(∣∣Γl
∣∣ ≥ cN

)
≤ −βcN (1 − oN (1)) ,

uniformly in c and all β sufficiently large. Hence, again by comparison with (40)
we can ignore all collections of large contours with total length

∣∣Γl
∣∣ ≥ KβN .

On the other hand, elementary low density percolation arguments (control
of sizes of connected components via Kesten’s bound) and the ±-symmetry of
height function imply that

log PN,β

(
|α(Γs)| ≥ b

∣∣ Γl
)

� −eβb2

N2
∧ βεβb

log N
,

uniformly in Γl and in b � KβN2. Again, a comparison with (40) implies that
we may restrict attention to the case of |α(Γs)| � N3/2. Such corrections to the
total value of Ξ are invisible on the scales (5) we work with and, consequently,
the area shift induced by small contours may be ignored.

4.5 The Reduced Model of Big Contours

In the sequel we shall employ the following notation: C for clusters of non-
compatible small contours and Φβ(C) for the corresponding cluster weights which
shows up in the cluster expansion representation of partition functions. Note that
although the family of clusters C does depend on the running microscopic scale
N , the weights Φβ(C) remains the same. By usual cluster expansion estimates,
for all β sufficiently large

sup
C=∅

e2β(diam∞(C)+1) |Φβ(C)| � 1. (45)

We are ready now to describe the reduced model which takes into account only
large contours: The probability of a compatible collection Γ = {Γ1, . . . ,Γk} of
large contours is given by

QN,β (Γ) ∼= exp

{
−β
∑

|Γi| −
∑

C⊂ΛN

1{C∼Γ}Φβ(C)

}
, (46)

The conditional distributions of Ξv
N and Ξs

N given such Γl are still
Bin (|VN (Γ)| , pv) and Bin (|SN (Γ)| , ps), and we shall use QN,β for the corre-
sponding joint distribution.

For future references let us formulate the analog of the bulk fluctuation bound
(40) in terms of the reduced measure QN,β : For every K fixed

log QN,β

(
ΞN ≥ ρβN3 + AN2

∣∣Γ
)

= −N

(
δβ − α(Γ)

N2

)2

2Dβ
+ O (log N) , (47)

uniformly in A ≤ K and |α(Γ)| ≤ KN2.
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The notation for conditional reduced measures is

Q
A
N,β = QN,β

(
·
∣∣ΞN ≥ ρβN3 + AN2

)
.

From now on we shall concentrate on proving A2 of Theorem A for Q
A
N,β-

measures instead of P
A
N,β-measures. Specifically, we shall prove:

Theorem C. Assume that bulk occupation probabilities pv and ps satisfy (3).
Then there exists β0 < ∞ such that for any β > β0 the following holds: Let
0 < A1(β) < A2(β) < A3(β) < . . . and, respectively 0 < a−

1 (β) < a+
1 (β) <

a−
2 (β) < a+

2 (β) < . . . be the sequences of as described in part A1 of Theorem A.
Then, for any A ∈ [0, A1) the set Γ of large contours is empty with Q

A
N,β-

probability tending to one. On the other hand, for any � = 1, 2, . . . and for
any A ∈ (A�, A�+1), the set Γ contains, with Q

A
N,β-probability tending to one,

exactly � large contours Γ = {Γ1, . . . ,Γ�}. Moreover, the rescaled contours from
Γ concentrate in Hausdorff distance dH near the optimal stack {γ∗

1 , . . . , γ∗
� }, as

described in part A1 of Theorem A, in the following sense: For any ε > 0,

lim
N→∞

Q
A
N,β

(
�−1∑

i=1

dH

(
1
N

Γi, γ
∗
i

)
+ min

x : x+γ�‘⊂B1
dH

(
1
N

Γ�, x + γ∗
�

)
≥ ε

)
= 0.

(48)

5 Proofs

5.1 Surface Tension

Let us say that a nearest-neighbor path γ on Z
2 is admissible if it can be suppress

realized as a portion of a level line of the height function hγ in (41). Following
(46) we associate with γ its free weight

wf
β(γ) = e−β|γ|−∑

C �∼ Γ Φβ(C). (49)

We say that an admissible γ = (γ0, . . . , γn) is γ : 0 → x if its end-points satisfy
γ0 = 0 and γn = x. The corresponding two-point function and the surface tension
are

Gβ(x) �
∑

γ:0→x

wf
β(γ) and τβ(x) = − lim

n→∞
1
n

log Gβ(�nx�). (50)

Recall that we are considering only sufficiently large values of β. In particular,
(45) applies, and the surface tension τβ in (50) is well defined.

In the notation of (49) given a large level line Γ ⊂ BN we define its free
weight

wf
β(Γ) = e−β|Γ|−∑

C�∼Γ Φβ(C). (51)

In this way the measure QN in (46) describes a gas of large level lines which
interact between each other and with the boundary ∂BN . The statement below
is well understood (see e.g. [DKS]), and it holds for all sufficiently low temper-
atures:
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Lemma 1. Let η ⊂ B1 be a rectifiable Jordan curve. Given any sequence of
positive numbers εN such that limN→∞ εN = 0 and limN→∞ NεN = ∞, the
following holds:

lim
N→∞

1
N

log

(
∑

Γ⊂BN

wf
β(Γ)1{dH( 1

N Γ,η)≤εN}

)
= −τβ(η). (52)

5.2 Lower Bounds on QN,β

(
ΞN ≥ ρβN3 + AN2

)

Let us apply part A.1 of Theorem A for the surface tension τβ defined in (50)
and bulk occupation probabilities pv(β), ps(β) which satisfy (3). Assume that
A ∈ (A�(β), A�+1(β)) for some � = 0, 1, . . . . Let a∗ = 0 if � = 0 and a∗ ∈ (a−

� , a+
� )

be the optimal rescaled area as described in Theorem A. Then,

Proposition 3. In the notation of (10) and (VPδ) the following lower bound
holds:

lim inf
N→∞

1
N

log QN,β

(
ΞN ≥ ρβN3 + AN2

)
≥ −min

L
Eβ (L |δβ)

= −
(

(δβ − a∗)2

2Dβ
+ τβ(a∗)

)
.

(53)

Proof. If a∗ = 0, then the claim follows from (47).
Assume that a∗ ∈ (a−

� , a+
� ) for some � ≥ 1. Let γ1 ⊆ γ2 ⊆ · · · ⊆ γ� ⊂ B1 be

the optimal stack as described in Theorem B. Pick a sequence εN which satisfies
conditions of Lemma 1 and, for J = 1, . . . , � define tubes

Aj
N = (1 − (1 + 3(j − 1))εN )Nγ̊j \ (1 − (2 + 3(j − 1))εN )Nγ̊j .

Lemma 1 implies that for any j = 1, . . . , �

lim
N→∞

1
N

log

⎛

⎝
∑

Γj⊂Aj
N

wf
β(Γj)

⎞

⎠ = −τβ(γj). (54)

By construction Aj
N -s are disjoint and there exists c1 = c1(β, a∗) > 0 such that

min
1≤j�

dH(Aj−1
N , Aj

N ) ≥ c1NεN

where we put A0
N = ∂BN . Hence, in view of (45),

exp

⎧
⎪⎪⎨

⎪⎪⎩
−β

�∑

j=1

|Γj | −
∑

C∼Γ
C⊂ΛN

Φβ(C)

⎫
⎪⎪⎬

⎪⎪⎭
� e−c2�Ne−2c1NεN

�∏

1

wf
β(Γj) (55)
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for any collection Γ = (Γ1, . . . ,Γ�) of level lines satisfying Γj ⊂ Aj
N for j =

1, . . . , �.
Note also that, for any j = 1, . . . �, if a large level line Γj ⊂ Aj

N , then

N2a(γj)(1 − 3�εN )2 ≤ a(Γj) ≤ N2a(γj).

Hence, by (47),

1
N

log QN,β

(
ΞN ≥ ρβN3 + AN2

∣∣Γ
)

≥ − (δβ − a∗)2

2Dβ
−

6δ2
β�εN

Dβ
, (56)

for any collection Γ = (Γ1, . . . ,Γ�) of such level lines.
Putting (54), (55) and (56) together (and recalling that εN was chosen to

satisfy conditions of Lemma 1) we deduce (3). ��

5.3 Strategy for Proving Upper Bounds

Below we explain the strategy which we employ for proving (48). For the rest
of the section let us assume that a sufficiently large β and an excess area value
A ∈ (A�(β), A�+1(β)) are fixed.
Step 1 (Hausdorff distance and Isoperimetric rigidity). We shall employ the

same notation dH for two and three dimensional Hausdorff distances.
Given a family L of compatible loops define the height function h[L] : B1 �→ N,

h[L](y) =
∑

γ∈L
1{y∈γ̊}.

In the case of the optimal stack (recall that we fixed β and A, so the latter
notion is well defined) L∗ = (γ∗

1 , . . . , γ∗
� ) as described in Theorem B, we say that

x is admissible if x + γ∗
� ⊂ B1. If x is admissible, then we use h∗

x = h∗
x(A, β)

for the height function of (γ∗
1 , . . . , x + γ∗

� ). Of course if L∗ is of type-2, the only
admissible x is x = 0.

We can think about h[L] in terms of its epigraph, which is a three dimensional
subset of B1 × R+. In this way the notion of Hausdorff distance dH (h[L], h∗

x) is
well defined.

We will need the qualitative stability properties of the minima of the
functional

Eβ (L | δβ) =
∑

γ∈L
τβ(γ) +

(δβ − a(L))2

2Dβ
.

Namely, we claim that for every ν > 0 there exists ρ = ρβ(ν,A) > 0 such that

Eβ (L | δβ) > τβ(a∗) +
(δβ − a∗)2

2Dβ
+ ρ, (57)

whenever minx dH (h[L], h∗
x) > ν. Such stability properties are known for the

Wulff and constrained Wulff isoperimetric problems. That is, if W is the Wulff
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loop with area a (W) inside, see Sect. 3.2, and γ is a loop with the same area,
a (γ) = a (W) , which satisfies minx dH (γ,W + x) > ν, then for some ρ = ρ (ν) >
0 we have

τ (γ) ≥ τ (W) + ρ.

That is the content of the generalized Bonnesen inequality, proven in [18], see
relation 2.4.1 there. The same stability property holds for the constrained case,
that is when we impose the additional constrain that the loop γ has to fit inside
a square, and where the role of the Wulff shape W is replaced by the Wulff pla-
quette P, see [33] for more details. We will show now that the above quantitative
stability of the surface tension functional implies the quantitative stability of the
functional Eβ (∗|δβ) .

Let us prove (57). Suppose dH is bigger than ν. There can be several rea-
sons for that. The simplest is that the number of levels in the epigraph of h [L]
is different from that for h∗. (In which case the Hausdorff distance in ques-
tion is at least 1.) In order to estimate the discrepancy ρ in that case we
have to look for the minimizer of the functional Eβ (L|δβ) under additional
constraint on L to have a different number of levels than the optimal stack
h∗. Let Ew

β (δβ) be the minimal value of the functional Eβ (L|δβ) over these
‘wrong’ loop configurations. The function Ew

β (δβ) , as a function of δβ , is piece-

wise continuous, as is the true optimal value Eβ (δβ) = τβ (a∗)+ (δβ−a∗)2

2Dβ
(where

a∗ = a∗ (δβ) is the optimal area corresponding to the excess value δβ). The
difference Ew

β (δβ) − Eβ (δβ) is continuous and non-negative, and it vanishes pre-
cisely at the values δβ corresponding to critical values A� (β) of the parameter
A. Therefore the difference Ew

β (δβ) − Eβ (δβ) ≡ ρ0 (A, β) is positive for our fixed
value A ∈ (A� (β) , A�+1 (β)) .

Let now the number of levels l in the epigraph of h [L] is l (h∗) – i.e. the
same as that for h∗. Let La be the minimizer of Eβ (L|δβ) over all the families
with l (h∗) levels and with a (L) = a. If our loop collection L is far from the
optimal stack La∗ – i.e. if minx dH (h [L] , h∗

x) > ν – as well as from all other
stacks: minx dH (h [L] , h [La]x) > ν

10 , then our claim (5.12) follows just from the
stability properties of the surface tension functional τ (∗) . If, on the other hand,
L is far from the optimal stack La∗ , i.e. minx dH (h [L] , h∗

x) > ν, but it is close
to some other stack Lā from ‘wrong area stacks’: minx dH (h [L] , h [Lā]x) < ν

10 ,
then we are done, since in that case dH (h [La∗ ] , h [Lā]) > 9ν

10 , and we already
know the minimizer of Eβ (∗|δβ) over the set

{
L : minx dH (h [L] , h [Lā]x) < ν

10

}

to be far from La∗ .

Step 2 (Upper bound on the number of large contours, compactness considera-
tions and skeleton calculus). In principle there should be a nice way to formulate
and prove large deviation results using compactness of the space of closed con-
nected subsets of B1 endowed with Hausdorff distance, see [13]. However, as in
the latter work, we shall eventually resort to skeleton calculus developed in [18].

By (46) and (45),

lim sup
N→∞

1
N

log QN,β

(∑
|Γi| ≥ KN

)
≤ −Kβ

(
1 − O

(
e−4β

))
.
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In view of Proposition 3 we can reduce attention to families Γ of large contours
which satisfy

∑
|Γi| ≤ Kβ(A)N for some Kβ(A) large enough. By (44) this

means that we can restrict attention to collections Γ of large contours whose
cardinality is at most

# {Γi ∈ Γ} ≤ nβ(A) = Kβ(A)/εβ(A). (58)

Given a compatible collection Γ of large contours we can talk about the rescaled
surface hN [Γ] := h

[
1
N Γ
]

and, accordingly, consider events

min
x

dH (hN [Γ], h∗
x(A, β)) > ν. (59)

Fix a sequence εN satisfying conditions of Lemma 1 and set �N = NεN .
Consider a large contour Γi ∈ Γ. By (58) there are at most nβ(A) such contours,
and each of them has a bounded length |Γi| ≤ KN . In view of south-west
splitting rules we can view Γi as a parameterized nearest neighbor loop Γi =
{u0, . . . , un = u0} with n ≤ KN .

Definition 6. The �N -skeleton γi of Γi is defined as follows: Set Nu0 = u0 and
τ0 = 0. Then, given k = 0, 1, . . . with uk and τk already defined set

τk+1 = min {m > τk : |um − Nuk|1 > �N} and Nuk+1 = uτk+1 ,

provided {m > τk : |um − uk| > �N} �= ∅. Otherwise stop and set γi ⊂ B1 to be
the polygonal approximation through the vertices u0, . . . , uk, u0.

We write Γi
�N∼ γi and, accordingly, Γ �N∼ S, if S = (γ1, γ2, . . .) is a collection

of �N skeletons compatible with family Γ of large contours. Since |Γi| ≤ KN any
compatible �N skeleton γi has at most K

εN
vertices. Therefore, there are at most

((
N2
) K

εN

)nβ(A)

= exp
{

2KKβ(A) log N

εN εβ(A)

}
= eoN (1)N

different collections of �N -skeletons to consider. Thus the entropy of the skeletons
does not present an issue, and it would suffice to give uniform upper bounds on

Q
A
N,β

(
min

x
dH (hN [Γ], h∗

x(A, β)) > ν; Γ �N∼ S
)

for fixed �N -skeleton collections S.
If γ ⊂ B1 is a closed polygon – for instance an �N -skeleton of some large

contour – then its surface tension τβ(γ) and its signed area a(γ) are well defined.
Accordingly one defines τβ(S) =

∑
i τβ(γi) and a (S) =

∑
i a(γi) for finite collec-

tions S of polygonal lines. We apply now the isoperimetric rigidity bound (57):
For every ν > 0 there exists ρ = ρβ(ν,A) > 0 such that for all N sufficiently
large the following holds:

Eβ (S | δβ) =
∑

γ∈S
τβ(γ) +

(δβ − a(S))2

2Dβ
> τβ(a∗) +

(δβ − a∗)2

2Dβ
+ ρ, (60)
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whenever S is an �N -skeleton; S �N∼ Γ of a collection Γ of large contours which
satisfies (59).

For n ≤ nβ(A) (see (58)) and ρ > 0 consider the collection SN (ρ) of families
of �N -skeletons S = (γ1, . . . , γn) which satisfy (60).

Then (48) would be a consequence of the following statement:

Theorem 2. There exists a positive function α on (0,∞) such that the following
happens: Fix β sufficiently large and let A be as in the conditions of Theorem C.
Then for any ρ > 0 fixed,

max
S∈SN (ρ)

1
N

log Q
A
β,N

(
Γ �N∼ S

)
< −α(ρ), (61)

as soon as N is sufficiently large.

Similar upper bounds were derived in [18] for collections consisting of one large
and several small skeletons. Here we have somewhat more delicate situation,
since we need to control the weights of stacks of almost optimal contours, which
are interacting. This requires additional tools and efforts.
Step 3 (Refined estimates in terms of graph structure of Γ).

Let us elaborate on the upper bounds derived in [18]. Consider the ensemble
of large microscopic loops Γ with weights wβ

f (Γ) as in (51). Given a (polygonal)
skeleton γ ⊂ B1 define

wf
β

(
Γ �N∼ γ

)
:=
∑

Γ
�N∼ γ

wf
β(Γ).

More generally, given a function F (Γ1,Γ2, ...) we put

⊗

i

wf
β (F (Γ1,Γ2, ...)) :=

∫ ⊗

i

wf
β (dΓi) F (Γ1,Γ2, ...).

Upper bounds derived in [18] imply that here exists a positive non-decreasing
function α0 on (0,∞) such that the following happens: Fix a0 > 0. Given a
closed polygon γ, define its excess surface tension

Ωβ(γ) = τβ(γ) − τβ (a(γ)) . (62)

Then, for all N and β sufficiently large,

1
N

log wf
β

(
Γ �N∼ γ

)
< − (τβ (a(γ)) + α0 (Ωβ(γ))) (1 − oN (1)) (63)

uniformly in a(γ) > a0 . This estimate, is explained in the beginning of Sub-
sect. 6.1.

Should we be able to bound Qβ,N

(
Γ �N∼ S

)
by product weights

⊗
wf

β

(
Γ �N∼ S

)
:=
∏

γi∈S
wf

β

(
Γi

�N∼ γi

)
,
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then (63) and Proposition 3 would readily imply (61). However, due to cluster
sharing in (46) and due to confined geometry of clusters; C ⊂ BN , contours in Γ
do interact both between each other and with ∂BN , which a priori may lead to
a modification of surface tension. Therefore, one should proceed with care.

A compatible collection Γ = {Γv}v∈V of large level lines has a natural graph
structure: Namely let us say that Γu ∼ Γv if there is a continuous path in R

2

which connects between Γu and Γv without hitting any other element of Γ. This
notion of hitting is ambiguous because by construction different Γv-s may share
bounds or even coincide. We resolve this ambiguity as follows: If there is a strict
inclusion Γ̊u ⊂ Γ̊v, then any path from the infinite component of R

2 \ Γv to Γu

by definition hits Γv. If Γv1 = · · · = Γvk
, then we fix an ordering and declare

that any path from the infinite component of R
2 \ Γv1 to Γvj

; j > 1, hits Γvi
for

any i < j.
In this way we label collections Γ of large level lines by finite graphs G =

(V, E). If S = {γu} is a family of �N -skeletons of Γ (meaning that Γu
�N∼ γu for

every u ∈ V, then by definition S has the same graph structure.
We write Γ ∈ G if G is the above graph of Γ. The chromatic number of this

graph plays a role. In Subsect. 5.4 we show how, once the chromatic number is
under control, to reduce complex many-body interactions in Qβ,N

(
Γ �N∼ S

)
to

upper bounds on pairs of interacting contours.
Step 4 (Entropic repulsion versus interaction). In Subsect. 5.5 we formulate

decoupling upper bounds for two interacting contours. In view of these bounds
(45) implies that at sufficiently low temperatures entropic repulsion always beats
our weak interactions. The proof is relegated to Sect. 6.
Step 5 (Bounds on chromatic numbers). In Subsect. 5.6 we derive exponential

upper bounds on chromatic numbers, which enable reduction to the decoupling
estimates for pairs of contours.

5.4 A Chromatic Number Upper Bound on a Collection of Large
Contours

Let G = (V, E) be a finite graph, for instance associated to a collection Γ =
{Γv}v∈V of large level lines. Let S = {γv}v∈V be a collections of polygonal lines.
We wish to derive an upper bound on QN,β-probabilities (see (46))

QN,β

(
1{Γ∈G}

∏

v∈V
1{

Γv
�N∼ γv

}

)

∼=
∑

Γ

e−β
∑

v|Γv|−∑∗
C�∼Γ Φβ(C)1{Γ∈G}

∏

v∈V
1{

Γv
�N∼ γv

}.

Above
∑∗ restricts summation to connected clusters C ⊂ BN . Since we are trying

to derive upper bounds in terms of surface tension τβ which was introduced in
(52) in terms of infinite volume weights, it happens to be convenient to augment
V with an additional root vertex 0 which corresponds to Γ0 = ∂BN , and connect
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it to other vertices of V using exactly the same rules as specified above (under
the convention that if Γ contains other copies of ∂BN , then Γ0 is the external one
in the ordering of these copies). Let G0 = (V0, E0) to be the augmented graph,
and let Ĝ0 to be the line graph of G0. That is vertices of Ĝ0 are undirected edges
e = (u, v) of G0, and we say that e and g are neighbors in Ĝ0 if they are adjacent in
G0. Let κG be the chromatic number of Ĝ0, and consider a disjoint decomposition
Ĝ0 = ∪κG

i=1Ĝi. By definition each class Ĝi contains pair-wise non-adjacent edges.
Now, if Γ ∈ G, then,

∑

C∼Γ
C⊂BN

Φβ(C) ≥
∑

v∈V
Φβ(C)1{C∼Γv} −

∑

e∈E0

|Φβ(C)|1{C∼e},

where we write 1{C∼e} = 1{C∼Γu}1{C∼Γv} for an undirected edge e = (u, v) ∈ E0.
We arrive to the following upper bound in terms of product free weights

defined in (51):

QN,β

(
1{Γ∈G}

∏

v∈V
1{

Γv
�N∼ γv

}

)

�
⊗

v∈V
wf

β

⎛

⎜⎜⎝1{Γ∈G}
∏

v∈V
1{

Γv
�N∼ γv

}exp

⎧
⎪⎪⎨

⎪⎪⎩

κG∑

i=1

∑

e∈ĜiC∼e

|Φβ(C)|

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟⎠ .

By the (generalized) Hölder inequality,

log EN,β

⎛
⎝1{Γ∈G}

∏
v∈V

1{

Γv
�N∼ γv

}

⎞
⎠

� 1

κG

κG∑
i=1

log

⎛
⎜⎜⎜⎝

⊗
v∈V

wf
β

⎛
⎜⎜⎜⎝1{Γ∈G}

∏
v∈V

1{

Γv
�N∼ γv

}exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κG
∑

e∈ĜiC�∼e

∣∣Φβ(C)
∣∣

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ . (64)

For each i = 1, . . . , κG we can relax constraints and write

1{Γ∈G} ≤
∏

e=(u,v)∈Ĝi

1{Γu∼Γv}.

Above Γu ∼ Γv just means that Γu and Γv are two compatible large level lines.
Let us say that u �∈ Ĝi if no edge of Ĝi contains u as a vertex. Each of the

i = 1, . . . , κG summands on the right hand side of (64) is bounded above (under
notation convention wf

β(Γ0) = 1 for the auxiliary vertex Γ0 = ∂BN ) by
∑

u �∈Ĝi

log wf
β(Γu

�N∼ γu)

+
∑

(u,v)∈Ĝi

log wf
β

⊗
wf

β

⎛
⎝1{Γu∼Γv}1{

Γv
�N∼ γv

}1{

Γu
�N∼ γu

}eκG
∑

C�∼e|Φβ(C)|
⎞
⎠ . (65)
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In order to apply (65) we need, first of all, to control the chromatic number
κG . After that we shall be left with studying only the case of two compatible
contours, and we shall need to show that in the latter case at all sufficiently low
temperatures entropic repulsion which is triggered by compatibility constraint
Γu ∼ Γv wins over the attractive potential κG

∑
C∼e |Φβ(C)|.

5.5 Entropic Repulsion Versus Interaction

In this subsection we formulate upper bounds on probabilities related to two
compatible interacting large contours.

Theorem 3. Assume that a number χ > 1/2 and a sequence {κβ} are such that

lim sup
β→∞

sup
C=∅

κβeχβ(diam∞(C)+1) |Φβ(C)| < 1. (66)

Fix a0 > 0. Recall the definition of excess surface tension Ωβ in (62). Then,

1
N

log

(
wf

β

⊗
wf

β

(
1{Γu∼Γv}1{

Γv
�N∼ γv

}1{

Γu
�N∼ γu

}eκβ

∑
C�∼e|Φβ(C)|

))

≤ −[τβ(a(γu)) + τβ(a(γv)) + α0 (Ωβ(γu)) + α0 (Ωβ(γv))] (1 − oN (1)) ,(67)

uniformly in β and N sufficiently large and uniformly in closed polygonal lines
γv, γu satisfying a(γv), a(γu) ≥ a0. The function α0 is the function appear-
ing in (63).

We sketch the proof of Theorem 3 in the concluding Sect. 6.

5.6 Upper Bound on κG

In this Subsection we shall show that for all β sufficiently large one can restrict
attention to graphs G satisfying κG ≤ κβ where the sequence {κβ} complies
with (66).

We start with a simple general combinatorial observation.
Let GN be a graph with no loops and double edges, having N vertices. Its

edge coloring is called proper, if at every vertex all the bonds entering it have
different colors. The minimal number of colors needed for creating a proper edge
coloring will be denoted by κ (GN ) . It is called the edge chromatic number. We
need the upper bound on κ (GN ) . Evidently, the complete graph with N vertices
has the highest edge chromatic number, so it is sufficient to consider only the
case of GN being a complete graph.

Theorem 4. Let GN be a complete graph with N vertices. Then

κ (GN ) =
{

N if N is odd,
N − 1 if N is even.
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Proof. Let us produce a proper edge coloring of GN by N colors, for N odd. To
do this, let us draw GN on the plane as a regular N -gon PN , with all its diagonals.
Let us color all the N sides s of PN using all the N colors. What remains now is
to color all diagonals. Note, that every diagonal d of PN is parallel to precisely
one side sd of PN , because N is odd. Let us color the diagonal d by the color of
the side ed. Evidently, the resulting coloring CN is proper.

Every vertex of GN has N − 1 incoming edges, while we have used N colors
to color all the edges. Therefore at each vertex v exactly one color cv is missing
– it is the color of the edge opposite v. By construction, all N missing colors
cv are different. Let us use this property to construct a proper edge coloring of
GN+1 by N colors. First, we color GN ⊂ GN+1 by the coloring CN . Let w be
the extra vertex, w = GN+1 \ GN . Let us color the bond (v, w) by the color cv.
Evidently, the resulting coloring CN+1 is again proper.

Finally, for N odd the constructed coloring CN is best possible: there is no
coloring using N − 1 colors. Indeed, suppose such a coloring does exist. That
means that at each vertex of GN all N − 1 colors are present. Therefore, the
bonds of the first color, say, define a partition of the set of all vertices into pairs.
That, however, is impossible, since N is odd. This nice last argument is due to
O. Ogievetsky. ��

Next let us record a (straightforward) consequence of (47) as follows: Fix A.
Then,

lim
N→∞

(
1
N

log
(
QN,β

(
ΞN ≥ ρβN3 + AN2

∣∣Γ �N∼ S
))

+
(δβ − a (S))2

2Dβ

)
= 0.

uniformly in collections S of closed polygons with 0 ≤ a (S) ≤ δβ (recall (10) for
the definition of δβ).

We proceed with the following two observations concerning the variational
problem (VPδ):

Lemma 2. Fix β sufficiently large and consider (VPδ). Given δ > 0 let a∗
β(δ)

be the optimal area. Then,

lim sup
δ→∞

(
δ − a∗

β(δ)
)

:= ξβ < ∞.

Furthermore,

Lemma 3. In the notation of Lemma 2,

min
�

(
τβ

(
L2

�(a)
)

+
(δ − a)2

2Dβ

)
−
(

τβ

(
a∗

β

)
+

(δ − a∗
β)2

2Dβ

)
≥

(a − a∗
β)2

2Dβ
,

for all δ and all a ∈ [0, δ]
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Proof of Lemma 2. We may consider only sufficiently large values of δ, such that
solutions to (VPδ) are given by optimal stacks of type 2. By the second of (21),

δ − a∗
β(δ)

Dβ
=

τβ(e)
r2,∗(a∗

β(δ))
,

where r2,∗(a) is the radius of the optimal stack of type-2 at given area a. Hence,
it would be enough to check that

lim inf
a→∞ r2,∗(a) > 0. (68)

Clearly, if � < m and a ∈ [mw, 4�] (that is if area a can be realized by both
� and m stacks of type-2), then r2,�(a) < r2,m(a). Which means that the map
a �→ r2,∗(a) has the following structure: There is a sequence w = â1 < â2 < . . .
of (transition) areas such that:

(a) On each of the intervals (â�, â�+1) the optimal radius r2,∗(a) = r2,�(a) and it
is decreasing.

(b) At transition points r2,�(â�+1) < r2,�+1(â�+1). Hence we need to show that

lim inf
�→∞

r2,�(â�+1) > 0.

Fix � and define r� = r2,�(â�+1) and ρ� = r2,�+1(â�+1). Then,

â�+1 = �
(
4 − (4 − w)r2

�

)
= (� + 1)

(
4 − (4 − w)ρ2

�

)
. (69)

By definition, τ
(
L2

�(â�+1)
)

= τ
(
L2

�+1(â�+1)
)
. Which reads (recall (19) and

the first of (21)) as

� (8 − 2r�(4 − w)) = (� + 1) (8 − 2ρ�(4 − w)) (70)

Solving (69) and (70) we recover (68).

��
Remark 4. A slightly more careful analysis implies that under (3) there exists
ν < ∞ such that for all sufficiently large values of β,

sup
δ

(
δ − a∗

β(δ)
)

≤ eβν . (71)

Proof of Lemma 3. By the second of (21) and then by (19) the function a �→
τβ

(
L2

�(a)
)

is convex for any � ∈ N. Hence,

d2

da2

(
τβ

(
L2

�(a)
)

+
(δ − a)2

2Dβ

)
≥ 1

Dβ

uniformly in a ∈ (�w, δ ∧ 4�). The same applies at generic values a ∈ (w, δ) for
the function

min
�

(
τβ

(
L2

�(a)
)

+
(δ − a)2

2Dβ

)
.

But the latter attains its minimum at a∗
β(δ). Hence the conclusion. ��
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Consider now a collection S = {γv}v∈V of closed polygonal lines. Given a number
ζ < 1, such that 2ζw > a (B1) = 4, let us split S into a disjoint union,

S = S0 ∪ S1 ∪ . . . , (72)

where S0 contains all the polygons γ of S with area a(γ) ≥ ζw, whereas, for
i = 1, 2, . . .

Si =
{
γ ∈ S : a(γ) ∈

[
ζi+1w, ζiw

)}
.

By construction, any compatible collection Γ of large level lines, such that
Γ �N∼ S0 is always an ordered stack. Given numbers d > 0,m ∈ N and a value
β of the inverse temperature, let us say S is bad; S ∈ Bd,m(β), if either there
exists i > dβ such that Si is not empty, or there exists 1 ≤ i ≤ dβ such that the
cardinality

|Si| = # {γ : γ ∈ Si} ≥ m. (73)

Alternatively, we may think in terms of graphs G = (V, E) associated to bad
collections S = {γv}v∈V .

Proposition 4. There exist d < ∞ and m ∈ N such that for all sufficiently
large values of β the following holds:

lim sup
N→∞

1
N

max
S∈Bd,m(β)

log Q
A
N,β

(
1{Γ∈G}

∏

v∈V
1{

Γv
�N∼ S

}

)
< 0, (74)

for any excess area A ≥ 0.
In particular for all sufficiently large β we may restrict attention to graphs G

with chromatic number κG ≤ βdm + 2, independently of the value of excess area
A in Q

A
N,β.

Proof of Proposition 4. Note that the estimate κG ≤ βdm + 2 on the chromatic
number is obtained from (74) as follows. For good skeleton collections the union
S1 ∪ S2 ∪ ... contains at most βdm loops, while the collection of large level lines
Γ(0) �N∼ S0 is an ordered stack. Therefore we have to estimate the edge chromatic
number of a graph with at most βdm + 2 vertices, which we do by using our
combinatorial theorem above.

In view of the lower bound (53) it would be enough to prove the following:
There exists c = cβ > 0 such that If S ∈ Bd,m(β)

lim sup
N→∞

max
S∈Bd,m(β)

(
1
N

log
(
QN,β

(
Γ �N∼ S

))
+ τβ (a (S))

)
< −cβ (75)

Let S = {γu} ∈ Bd,m(β) be a bad collection of skeletons. Consider its decom-
position (72). For any k ≥ 0 set S(k)

l = S0 ∪ · · · ∪ Sk and S(k)
s = Sk+1 ∪ . . . .
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We shall prove (75) by a gradual reduction procedure using the following
identity: Given k ≥ 0, the decomposition S = S(k)

l ∪ S(k)
s induces the decompo-

sition Γ = Γ(k)
l ∪ Γ(k)

s of any collection Γ �N∼ S of large level lines. Then,

QN,β

(
Ξ ≥ ρβN3 + AN2 ; Γ �N∼ S

)

=
∑

Γ
�N∼ S

QN,β

(
Ξ ≥ ρβN3 + AN2

∣∣∣Γ(k)
l ∪ Γ(k)

s

)
Qβ,N

(
Γ(k)

s

∣∣Γ(k)
l

)
Qβ,N

(
Γ(k)

l

)
.

The conditional probability QN,β

(
·
∣∣Γ
)

is a straightforward modification of (46):
Given a splitting Γ∪Γ′ of a compatible family of large contours, or, alternatively
a splitting V ∪ V ′ of the vertices of the associated graph,

QN,β

(
Γ′ ∣∣Γ

) ∼= exp

⎧
⎪⎨

⎪⎩
−β
∑

v∈V′
|Γv| −

∑

C⊂ΛNC∼Γ

1{C∼Γ′}Φβ(C)

⎫
⎪⎬

⎪⎭
.

We shall rely on the following upper bounds on conditional weight which holds
for all β and N sufficiently large:

By (45) and (50),

1
N

log

⎛

⎜⎝
∑

Γ′�N∼ S′

QN,β

(
Γ′∣∣Γ

)
⎞

⎟⎠ ≤ −
(
1 − O

(
e−4β

))
τβ (S ′) . (76)

for any Γ and any collection S ′ of closed polygonal lines.
Let us now turn to proving (75) (and consequently (74)) proper.

Step 1. Let us explain how we choose m in Bd,m. We can fix (independently
of β two numbers r > 1 and c < ∞ such that

τβ

(
S(k)

s

)
≥ rτβ

(
a
(
S(k)

s

))
, (77)

whenever S and a number k ≥ 0 are such that

a
(
S(k)

s

)
≥ cζk. (78)

Indeed, by construction, the areas of loops from S(k)
s are bounded above by ζk+1.

Hence,

τβ

(
S(k)

s

)
≥ 2τβ(e)

⌊
a

ζk+1

⌋√
wβζk+1

whenever a
(
S(k)

s

)
= a. This should be compared with τβ(a) which equals to

2τβ(e)√awβ if a ≤ wβ and, otherwise, bounded above by 2τβ(e)
(⌊

a
wβ

⌋
+ 1
)

wβ .
Note that (78) will hold if |Sk+1| ≥ c

ζw . We set m = c
ζw .
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Step 2. The first consequence of (77) is that we can rule out collections S
with a

(
S(0)

s

)
≥ c. Indeed, let S be such a collection of polygonal lines. By

construction S0 is compatible with an ordered stack of large contours, hence its
graph is just a line segment. Hence, the decoupling bound (65) and Theorem 3
imply:

1
N

log
(
QN,β

(
Γ �N∼ S0

))
≤ − (1 − oN (1))

∑

γ∈S0

(τβ (a(γ)) + α0 (Ωβ(γ))) (79)

On the other hand, (76) and (77) imply that

1
N

log
(
QN,β

(
Γ(0)

s
�N∼ S(0)

s

∣∣Γ
))

≤ −r
(
1 − O

(
e−4β

))
τβ

(
a
(
S(0)

s

))
. (80)

for all compatible collections of large contours Γ �N∼ S0. The last expression is
strictly smaller than −τβ

(
a
(
S(0)

s

))
for all β satisfying

r
(
1 − O

(
e−4β

))
> 1.

Hence (75).
There are two implications of the above computation which hold for all β

sufficiently large. First of all pick ν1 > ν (see (71)). Then for any A we can
restrict attention to skeleton collections S satisfying

a (S0) ≥ δβ − eν1β . (81)

Indeed, recall β-independent constant c which was defined via (77). In view of
Proposition 4 we may restrict attention to a

(
S(0)

s

)
≤ c. Which means that if

(81) is violated, then
a (S) ≤ a∗

β(δβ) − eνβ + c

for all β sufficiently large. On the other hand, as we have already mentioned,
S0 has graph structure of an ordered stack or, in other words, one-dimensional
segment, and (79) holds. Therefore, (81) is secured by Lemma 3 and (71) (and,
of course, lower bound (53)).

Next, assume (81). Then, in view of the upper bound on conditional weights
(76), and proceeding as in derivation of (43), one can fix d < ∞ and rule out
skeletons γ with a(γ) < ξβdw.

As a result we need to consider only bad collections S which satisfy Si = ∅
for any i > βd, but which still violate (73).

Step 3. We proceed by induction. Assume that S is such that the cardinalities
|S1| , . . . , |Sk| ≤ m. Then S may be ignored if |Sk+1| > m. Indeed, the latter
would imply that a

(
S(k)

s

)
≥ cζk, and hence (77) holds. Consequently, as in the

case of (80)
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lim sup
N→∞

1
N

log
(
QN,β

(
Γ(k)

s
�N∼ S(k)

s

∣∣Γ
))

≤ −r
(
1 − O

(
e−4β

))
τβ

(
a
(
S(k)

s

))
.

(82)
for all collection Γ �N∼ S(k)

l .
On the other hand, by induction assumption, the chromatic number of L(k)

l

is bounded above by km + 2 ≤ βdm + 2 := κβ . Hence, Theorem 3 applies, and
in view of the decoupling bound (65), we infer:

1
N

log
(
QN,β

(
Γ �N∼ S(k)

l

))
≤ − (1 − oN (1))

∑

γ∈S(k)
l

(τβ (a(γ)) + α0 (Ωβ(γ)))

Together with (82) this implies (75). ��

5.7 Proof of Theorem 2

Let us complete the proof of Theorem 2 and hence of Theorem C. As we have seen
in the previous subsection for each β sufficiently large we may ignore skeleton
collections with chromatic numbers exceeding κβ = βdm + 2. If, however, the
skeleton S is good, that is if the chromatic number of S is less or equal to κβ ,
then (66) is satisfied, and, in view of (64), (65) and (67) we conclude that

1
N

log
(
QN,β

(
Γ �N∼ S

))
≤ −

⎛

⎝
∑

γu∈S
(τβ (a(γu)) + α0 (Ωβ(γu)))

⎞

⎠ (1 − oN (1)).

(83)
In (83) there is the same correction term oN (1) → 0 for all good skeletons. Since,

Eβ (S | δβ) =
∑

γu∈S
Ωβ(γu) +

⎛

⎝
∑

γu∈L
τβ(a(γu)) +

(δβ − a(L))2

2Dβ

⎞

⎠ ,

it remains to apply the quantitative isoperimetric bound (60).

6 Two Interacting Contours

In this concluding section we sketch the proof of Theorem 3. The proof relies
on the skeleton calculus developed in [18], Ornstein-Zernike theory and random
walk representation of polymer models [27], which, in the particular case of Ising
polymers, was refined and adjusted in [25]. We shall repeatedly refer to these
papers for missing details.

Throughout this section we shall assume that the constants χ > 1/2 and κβ

are fixed so that (66) holds.
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6.1 Low Temperature Skeleton Calculus and Modified Surface
Tension

We need to recall some ideas and techniques introduced in [18].
Consider an �N -skeleton γ = (u0, u1, . . . , un). It has n + 1 edges

e0 = (u0, u1), . . . , en = (un, u0).

The last edge en might have a shorter length than �N , but for the sake of the
exposition we shall ignore the corresponding negligible corrections. The edges of
γ are classified into being good or bad as follows: Fix once and for all some small
angle θ > 0 (note that the value of θ and hence the classification of edges we are
going to explain does not depend on β). With each edge e = (u, v) we associate
a diamond shape Dθ(e),

D(e) = Dθ(u, v) = (u + Yv−u) ∩ (v + Yu−v) ,

where for any x ∈ R
2 \ 0 we use Yx to denote the symmetric cone of opening θ

along the ray passing through x.
An edge ei of γ is called good if

D(ei) ∩ D(ej) = ∅ for any j �= i.

Otherwise the edge is called bad. We use g(γ) and b(γ) for, respectively, the sets
of good and bad edges of γ.

Let Γ be a large contour, and γ be its skeleton, having the set b(γ) of bad
bonds. We denote by Γb the portion of Γ, corresponding to bonds in b(γ).

The modified surface tension τ̂β(γ) is defined as follows:

τ̂β(γ) = τβ(γ) −
∑

e∈b(γ)

ψβ(e).

In its turn the function ψβ ≥ 0 is defined via functions (compare with (50))

G∗
β(x) :=

∑

γ:0→x

wf
β(η)eκβ

∑
C�∼η|Φβ(C)| and τ∗

β (x) = − lim
n→∞

1
n

log G∗
β(�nx�),

(84)
as

ψβ(x) = τβ(x) − τ∗
β (x).

The skeleton calculus developed in [18] implies the following two crucial bounds,
which hold uniformly in a(γ) > a0:

τ̂β(γ) ≥ τβ(a(γ)) + α0 (Ωβ(γ)) . (85)

and
∣∣∣∣∣∣∣∣∣∣

ln

wf
β

(
1{

Γ
�N∼ γ

}eκβ

∑
C�∼Γb

|Φβ(C)|
)

∏
(u,v)∈g(γ) Gβ(v − u)

∏
(u,v)∈b(γ) G∗

β(v − u)

∣∣∣∣∣∣∣∣∣∣

≤ oN (1)τβ(γ)N. (86)



Formation of Facets 237

The estimate (85) with the function α0(x) = 1
2x is nothing else but the estimate

(2.16.1) from the Lemma 2.16 of [18]. (Our Ω is what is called Δ there, and the
function nδ there vanishes in the case of our interest.) The estimate (86) is a
very special case of the Theorem 4.16 of [18], which establishes the asymptotic
independence of the surface tension on the shape of the volume.

In view of the Ornstein-Zernike asymptotics (for instance (3.4) in [25]) of low
temperature two-point functions Gβ in (50) and G∗

β in (84) the upper bound (63)
readily follows from (85) and (86).

6.2 Decoupling Upper Bound for Two Interacting Skeletons

Consider two �N -skeletons γ1 and γ2 as in the formulation of Theorem 3. Upper
bound (86) implies:

wf
β ⊗ wf

β

(
1{Γ1∼Γ2}1{

Γ1
�N∼ γ1

}1{

Γ2
�N∼ γ2

}eκβ

∑
C�∼(Γ1,Γ2)|Φβ(C)|

)

≤ eoN (1)N(τβ(γ1)+τβ(γ2))
∏

(u,v)∈b(γ1)∪b(γ2)

Ĝβ(v − u)

×
⊗

e∈g(γ1),f∈g(γ2)

wf
β

⎛

⎝
∏

e,f

1{

ηe
�N∼ e

}1{

ηf
�N∼ f

}1{ηe∼ηf }e
κβ

∑
e,f

∑
C�∼(ηe,ηf )|Φβ(C)|

⎞

⎠

Above ηe
�N∼ e = (u, v) means that ηe is an admissible path from u to v which is, in

addition, compatible with the �N -skeleton construction. As before, C �∼ (ηe, ηf )
means that C is not compatible with both ηe and ηf .

As in the derivation of (86) it is possible to check that the contribution
coming from

∑
C∼(ηe,ηf ) |Φβ(C)| could be ignored whenever Dθ(e) ∩ Dθ(f) = ∅.

In the latter case let us say that the edges e and f are not associated. Otherwise
we say that e ∈ g(γ1) and f ∈ g(γ2) are associated. Since by construction
Dθ(f)∩Dθ(f ′) = ∅ for any two good edges f, f ′ ∈ g(γ2), any good edge e ∈ g(γ1)
can be associated to at most mθ different good edges of g(γ2). Proceeding as in
the derivation of (65) we conclude that we need to derive the upper bound on

wf
β ⊗ wf

β

(
1{

ηe
�N∼ e

}1{

ηf
�N∼ f

}1{ηe∼ηf }e
mθκβ

∑
C�∼(ηe,ηf )|Φβ(C)|

,

)

uniformly in Dθ(e) ∩ Dθ(f) �= ∅.
Since mθ does not depend on β, κ′

β = mθκβ satisfies (66) with any χ′ < χ.
Therefore, Theorem 3 would be a consequence of the following claim:

Proposition 5. Under the conditions of Theorem 3

wf
β ⊗ wf

β

(
1{

ηe
�N∼ e

}1{

ηf
�N∼ f

}1{ηe∼ηf}e
κβ

∑
C�∼(ηe,ηf )|Φβ(C)|

)

≤ e−�N(τβ(v−u)+τβ(w−z))(1−oN (1)), (87)
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uniformly in β large and uniformly in all pairs of �N -edges e = (u, v) and f =
(v, z) such that Dθ(e) ∩ Dθ(f) �= ∅.

The estimate (87) is a manifestation of the fact that under (66) entropic
repulsion between paths ηe and ηf beats the attractive potential

eκβ

∑
C�∼(ηe,ηf )|Φβ(C)|

.

As a result, typical paths stay far apart and their contributions to the surface
tension just add up.

In the concluding Subsect. 6.3 we shall prove (87) in the most difficult case
when e and f stay close to the horizontal axis. This case is the most difficult
since it corresponds to the minimal strength of entropic repulsion between ηe

and ηf .

6.3 Effective Random Walk Representation

Consider edges f1 = (z,w) and f2 = (u, v) with u = (0, 0) := 0, v = (�N , 0),
z = (0, z) and w = (�N , z). Define the event (collection of paths (γ1, γ2))

T 2
+ = T 2

+(�N | z) =
{

(γ1, γ2) : γ1
�N∼ f1 ; γ2

�N∼ f2 ; γ1 ∼ γ2

}
.

In particular, if z ≥ 0, {γ1, γ2} ∈ T 2
+ (f1, f2) implies that γ1 “stays above” γ2.

Note, however that they can share edges, and that they might have overhangs.
We claim that the following holds:

Proposition 6. Assume (66). There exist a finite constant c+ such that for all
β sufficiently large,

sup
z≥0

wf
β ⊗ wf

β

(
T 2

+(�N | z); eκβ

∑
C 1C�∼η11C�∼η2 |Φβ(C)|

)
≤ c+e−2τβ(e1)�N (88)

as soon as N is sufficiently large.

Proving that c+ does not depend on β is the crux of the matter, and it is based
on a careful analysis of non-intersection probabilities for effective random walks
in a weak attractive potential.

Let T 1 = T 1(�N ) be the set of paths γ : 0 �→ v with v · e1 = �N . Note that
by definition (γ1, γ2) ∈ T 2

+ implies that γ2 ∈ T 1 and γ1 ∈ (0, z) + T 1.
Let K be a positive (two-dimensional) symmetric cone around e1 with an

opening strictly between π/2 and π. A high temperature expansions of polymer
weights eΦ(C) leads (see (4.9) in [25]) to the following irreducible decomposition
of decorated (open) contours [γ, C], where γ ∈ T 1(�N ) and C is a collection of
γ-incompatible clusters:

[γ, C] = a� ◦ a1 ◦ . . . am ◦ ar. (89)

The irreducible animals ai =
[
ηi,Di

]
belong to the family A = {a = [η,D]},

which could be characterized by the following two properties:
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a. If η is a path with endpoints at x, y, then

η ∪ D ⊆ D(x, y) := (x + K) ∩ (y − K) . (90)

b. a could not be split into concatenation of two non-trivial animals satisfying
a above.

The left and right irreducible animals satisfy one-sided versions of diamond-
confinement condition (90). For instance if a� =

[
η�,D�

]
and y is the right

end-points of η�, then η� ∪ D� ⊆ (y − K).
Given an animal a = [η,D] we use X(a) = X(η) to denote the vector which

connects the left and right end-points of η. The horizontal and vertical coordi-
nates of X are denoted by H = X · e1 and V = X · e2. By construction, H(a) ∈ N

for any irreducible animal a.
Returning to the decomposition (89), let us consider for each k ∈ N the

subset T 1
k of decorated paths [γ, C] from T 1 for which H(a�) +H(ar) = k. Then,

by (4.11) in [25] there exists cg < ∞ and νg > 0, such that

wf
β

(
T 1

k (�N )
)

≤ cge−βνgkwf
β

(
T 1 (�N )

)
(91)

for all β and N sufficiently large. So in the sequel we shall restrict attention to
decorated paths [γ, C] ∈ T 1

0 with empty right and left irreducible animals, that is
with a�, ar = ∅ in (89). In particular, we shall restrict attention to T 2

0,+(�N |z) :=
T 2

+ ∩
(
(z + T 1

0 ) × T 1
0

)
, and, instead of (88), shall derive an upper bound on

sup
z≥0

wf
β ⊗ wf

β

(
T 2

0,+(�N |z); eκβ

∑
C 1C�∼γ11C�∼γ2 |Φβ(C)|

)

A general case could be done by a straightforward adaptation based on the
mass-gap property (91).

Decorated paths [γ, C] ∈ T 1
0 have an immediate probabilistic interpretation:

Set τβ = τ(e1). Then (see Theorem 5 in [25])

Pβ(a) := eτβH(a)wf
β(a) (92)

is a probability distribution on A with exponentially decaying tail:
∑

a∈A

1X(a)=(h,v)Pβ(a) ≤ cge−νgβ(h+|v|−1), (93)

– i.e. no normalization in (92) is needed! Given x = (0, x) consider random walk
Sn = x +

∑n
1 Xi, where Xu-s are independent N × Z-valued steps distributed

according to
Pβ(X = y) =

∑

a∈A

1X(a)=yPβ(a).

Let Pβ,x be the corresponding measure on random walk paths. In this way
wf

β

(
T 1

0

)
equals to

wf
β

(
T 1

0

)
= e−�N τβ Pβ,0 (�N ∈ Range (Sn · e1)) . (94)
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Let us adapt the above random walk representation of a single decorated path to
the case of a pair of decorated paths, from

(
z + T 1

0

)
×T 1

0 . These have irreducible
decompositions

a = z + a1 ◦ · · · ◦ an and b = b1 ◦ · · · ◦ bm. (95)

Following [9] we shall align horizontal projections of underlying random walks.
Given (95) consider sets

Ha = {0,H(a1),H(a1) + H(a2), . . . , �N} ,

Hb = {0,H(b1),H(b1) + H(b2), . . . , �N} .

Set H(a, b) = Ha ∩ Hb. This intersection H is the set of horizontal projections
of end-points of jointly irreducible pairs of strings of animals. The alphabet A2

of such pairs could be described as follows: (a, b) ∈ A2 if
∑

H(ai) =
∑

H(bj) :=
H (a, b), and

H(a, b) = {0,H (a, b)} .

In the sequel we shall refer to elements c ∈ A2 as irreducible pairs.
By elementary renewal theory, (92) induces a probability distribution on A2

which inherits exponential tails from (93). We continue to call this distribution
Pβ . The i.i.d. N×Z×Z-valued steps of the induced random walk have distribution

Pβ (X = (H,V1,V2) = (h, v1, v2)) =
∑

c∈A2

1X(c)=(h,v1,v2)Pβ(c).

Decorated paths from
(
z + T 1

0

)
× T 1

0 give rise to random walks

(0, z, 0) +
n∑

1

Xi.

Note that in this notation

T 2
0,+ (�N | z) ⊂

⋃

n

{
n∑

1

Hi = n;Rn
+(z)

}
,

where

Rn
+(z) = {Zk ≥ 0 for k = 0, 1, . . . , n} and Zk = z +

k∑

1

(
V1

i − V2
i

)
. (96)

With a slight abuse of notation we shall use the very same symbol Pβ,z also for
the law of the random walk Zk in (96).

6.4 Recursion and Random Walk Analysis

Define
μβ(�N |z) = Pβ,z

(
T 2

0,+(�N

∣∣ z); eκβ

∑
C 1C�∼γ11C�∼γ2 |Φβ(C)|

)
.
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Assume (66). Then, following Subsection 6.1 of [25], one can develop the follow-
ing recursion relation for μβ = supN supz μβ(�N |z): There exist β-independent
constants c1 and ν such that

μβ ≤ 1 + μβc1e−2χβ max
z

∑

n

Eβ,z

(
e−νβZn ;Rn

+

)
. (97)

The importance of (97) is that

c1e−2χβ sup
z≥0

∑

n

Eβ,z

(
e−νβZn ;Rn

+

)
< 1 (98)

implies that μβ is bounded, and, since by (92) and (94),

wf
β ⊗ wf

β

(
T 2
0,+(�N

∣∣ z); e κβ
∑

C 1C�∼γ11C�∼γ2 |Φβ(C)|)

= e−2�N τβ(e1)
Pβ,z

(
T 2
0,+(�N

∣∣ z); e κβ
∑

C 1C�∼γ11C�∼γ2 |Φβ(C)|) ≤ e−2�N τβ(e1)μβ , (99)

one deduces (88) as an immediate consequence. It remains to prove:

Lemma 4. If χ > 1/2, then

lim
β→∞

e−2χβ sup
z≥0

∑

n

Eβ,z

(
e−νβZn ;Rn

+

)
= 0. (100)

In particular, the inequality (98) holds for all β sufficiently large.

Proof of Lemma 4. Let us fix z ≥ 0. Consider decomposition of paths from
Rn

+(z) with respect to the left-most minimum u, 0 ≤ u ≤ z. Define the strict
version R̂n

+ as
R̂n

+ = {Zk > 0 for k = 0, 1, . . . , n} .

Since W = V1 − V2 has symmetric distribution under Pβ , we can rewrite
∑
n

Eβ,z

(
e−νβZn ; Rn

+

)

=

z∑
u=0

e−νβu
∑
n

Pβ,0

(
R̂n

+;Zn = z − u
) ∑

m

Eβ,0

(
e−νβZm ; Rm

+

)
. (101)

Below we shall use a shorter notation Pβ for Pβ,0.
Following Subsection 7.1 in [25] let us describe in more detail the distribution

of steps W under Pβ . The fact that here we take the cone K to be symmetric with
respect to the e1-axis simplifies the exposition. In particular, W has a symmetric
distribution. The analysis of [25] could be summarized as follows:

1 − pβ := Pβ (W = 0) = 1 − O
(
e−β
)
, Pβ (W = ±1) = O

(
e−β
)

and, for z �= 0,±1, Pβ (W = z) ≤ pβe−νβ|z| (102)

There is a natural Wald-type decomposition of random walk Zk with i.i.d. steps
distributed according to (102): Let ξ1, ξ2, . . . be i.i.d. Bernoulli random variables
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with probability of success pβ , and let Uk be another independent i.i.d. sequence
with

Pβ (U = z) = p−1
β Pβ (W = z) for z �= 0. (103)

Set Mn =
∑n

1 ξi. Then Zn could be represented as

Zn =
Mn∑

k=1

Uk := YMn
,

where Yk is a random walk with i.i.d. steps U1,U2, . . . . With a slight abuse of
notation we continue to use Rn

+ for the corresponding event for Yk-walk.

Let y ∈ N and consider
∑

n Pβ

(
R̂n

+;Zn = y
)
. Let L̂y be the event that y is a

strict ladder height of Z, or equivalently, of Y. Let N̂(y) be the number of strict
ladder heights v ≤ y. Then (see Subsection 7.3 of [25] for more detail),

Pβ

(
R̂n

+;Zn = y
)

= Pβ

(
L̂y;Zn = y

)
=

1
n

Eβ

(
N̂(y);Zn = y

)
≤ y

n
P (Zn = y) .

Hence,

∑

n

Pβ

(
R̂n

+;Zn = y
)

≤ y

∞∑

�=1

Pβ(Y� = y)
∞∑

n=1

1
n

Pβ(Mn = �)

Now, since M is a process with Bernoulli steps, there is a combinatorial identity:

∞∑

n=1

1
n

Pβ(Mn = �) =
1
�

∞∑

n=�

(
n − 1
� − 1

)
p�

β (1 − pβ)n−� =
1
�
.

We claim that there exists c1 < ∞ such that
∞∑

�=1

1
�
Pβ(Y� = y) ≤ c1

y
(104)

holds for every y ∈ N and all β sufficiently large. Note that (104) would imply
that ∑

n

Pβ

(
R̂n

+;Zn = y
)

≤ c1 (105)

for all β sufficiently large.
In its turn (104) follows from routine estimates on characteristic functions.

Let φβ be the characteristic function of U in (103). By direct computation,

∞∑

�=1

1
�
Pβ(Y� = y) =

1
y

· 1
2π

∫ 2π

0

Fβ(θ)

(
y−1∑

1

e−ikθ

)
dθ =

1
y

y−1∑

1

F̂β(k),

where,

Fβ(θ) = Fβ

(
eiθ
)

=
1 − eiθ

1 − φβ(θ)
φ′

β(θ),
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and F̂β is its Fourier transform. In view of the exponential decay of probabilities
in (102), there exists r > 0, such that Fβ have uniformly bounded (in large
β) analytic extension to the complex annulus {z ∈ C : |z| ∈ (1, 1 + r)}. Hence,
F̂β(k) tend to zero uniformly exponentially fast, and in particular

∑∞
1

∣∣∣F̂β(k)
∣∣∣

is uniformly bounded in β large. (104) follows.
Let us turn to the second term

∑

m

Eβ

(
e−νβZm ;Rm

+

)
=
∑

y≥0

e−νβy
∑

m

Pβ

(
Rm

+ ;Zm = y
)

in (101). We claim that there exists a finite constant c2 such that

∑

m

Pβ

(
Rm

+ ;Zm = y
)

≤ c2(y + 1)
pβ

. (106)

for all y ≥ 0 and β large.
Note that (106) would imply that

∑

m

Eβ

(
e−νβZm ;Rm

+

)
≤ c3

pβ
.

By (101) and (105) this would mean that

sup
z≥0

∑

n

Eβ,z

(
e−νβZn ;Rn

+

)
≤ c1c3

(1 − e−νβ) pβ

Since by (102) the order of pβ = O
(
e−β
)
, the limit limβ→∞ e−2χβ

pβ
= 0 whenever

χ > 1/2. Hence (100).
It, therefore, remains to verify (106). Let Ny be the number of non-strict

ladder times for heights between 0 and y. Let My be the same variable for the
random walk Y. Clearly,

Ny =
My∑

i=1

ζi,

where ζi-s are i.i.d. Geo(pβ)-random variables. Proceeding as in the proof of
(105), and in particular relying on Subsection 7.1 in [25], we estimate:

∑

m

Pβ

(
Rm

+ ;Zm = y
)

≤ 1
pβ

∑

n

1
n

Eβ (My;Yn = y)

≤
(
EβMk

y

)1/k

pβ

∑

n

1
n

(Pβ (Yn = y))(k−1)/k
.

Applying Lemma 22 in [25] it is straightforward to see that under (102) for any
k ∈ N there is a finite constant ck such that

(
EβMk

y

)1/k ≤ ck(y + 1)



244 D. Ioffe and S. Shlosman

for all y ≥ 0 and β sufficiently large. On the other hand, again under (102), it is
straightforward to check that

max
y

Pβ (Yn = y) � n−1/2.

uniformly in n and in β large. Hence (106), and we are done. ��

References
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netically via their inner product. Special cases include the Ising model
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discuss questions of long-range order and decay of correlations in the spin
O(n) model for different combinations of the lattice dimension d and the
number of spin components n.

The loop O(n) model is a model for a random configuration of disjoint
loops. We discuss its properties on the hexagonal lattice. The model is
parameterized by a loop weight n ≥ 0 and an edge weight x ≥ 0. Special
cases include self-avoiding walk (n = 0), the Ising model (n = 1), critical
percolation (n = x = 1), dimer model (n = 1, x = ∞), proper 4-coloring
(n = 2, x = ∞), integer-valued (n = 2) and tree-valued (integer n >= 3)
Lipschitz functions and the hard hexagon model (n = ∞). The object
of study in the model is the typical structure of loops. We review the
connection of the model with the spin O(n) model and discuss its conjec-
tured phase diagram, emphasizing the many open problems remaining.

Keywords: Spin O(n) model · Loop O(n) model · Ising model · XY
model · Heisenberg model · Phase transitions · Spontaneous
magnetization · Symmetry breaking · Decay of correlations ·
Mermin–Wagner · Berezinskii–Kosterlitz–Thouless transition ·
Reflection positivity · Chessboard estimate · Infra-red bound ·
Gaussian domination · Graphical representation · Conformal loop
ensemble · Schramm–Loewner evolution · Self-avoiding walk · Dilute

R. Peled and Y. Spinka—Research supported by Israeli Science Foundation grant
861/15 and the European Research Council starting grant 678520 (LocalOrder).
Y. Spinka—Research supported by the Adams Fellowship Program of the Israel
Academy of Sciences and Humanities.

c© Springer Nature Singapore Pte Ltd. 2019
V. Sidoravicius (Ed.): Sojourns in Probability Theory
and Statistical Physics - I, PROMS 298, pp. 246–320, 2019.
https://doi.org/10.1007/978-981-15-0294-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0294-1_10&domain=pdf
https://doi.org/10.1007/978-981-15-0294-1_10


Lectures on the Spin and Loop O(n) Models 247

potts model · Lipschitz functions · Hard hexagon model · Critical
percolation on the triangular lattice · Dimer model · Proper 4-coloring
of the triangular lattice · Macroscopic loops · Microscopic loops

1 Introduction

The classical spin O(n) model is a model on a d-dimensional lattice in which
a vector on the (n − 1)-dimensional sphere is assigned to every lattice site and
the vectors at adjacent sites interact ferromagnetically via their inner product.
Special cases include the Ising model (n = 1), the XY model (n = 2) and the
Heisenberg model (n = 3). We discuss questions of long-range order (spontaneous
magnetization) and decay of correlations in the spin O(n) model for different
combinations of the lattice dimension d and the number of spin components n.
Among the topics presented are the Mermin–Wagner theorem, the Berezinskii–
Kosterlitz–Thouless transition, the infra-red bound and Polyakov’s conjecture
on the two-dimensional Heisenberg model.
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The loop O(n) model is a model for a random configuration of disjoint loops.
In these notes we discuss its properties on the hexagonal lattice. The model is
parameterized by a loop weight n ≥ 0 and an edge weight x ≥ 0. Special cases
include self-avoiding walk (n = 0), the Ising model (n = 1), critical percolation
(n = x = 1), dimer model (n = 1, x = ∞), proper 4-coloring (n = 2, x = ∞),
integer-valued (n = 2) and tree-valued (integer n >= 3) Lipschitz functions and
the hard hexagon model (n = ∞). The object of study in the model is the typical
structure of loops. We will review the connection of the model with the spin O(n)
model and discuss its conjectured phase diagram, emphasizing the many open
problems remaining. We then elaborate on recent results for the self-avoiding
walk case and for large values of n.

The first version of these notes was written for a series of lectures given at
the School and Workshop on Random Interacting Systems at Bath, England
in June 2016. The authors are grateful to Vladas Sidoravicius and Alexandre
Stauffer for the organization of the school and for the opportunity to present
this material there. It is a pleasure to thank also the participants of the meeting
for various comments which greatly enhanced the quality of the notes.

Our discussion is aimed at giving a relatively short and accessible introduc-
tion to the topics of the spin O(n) and loop O(n) models. The selection of topics
naturally reflects the authors’ specific research interests and this is perhaps most
noticeable in the sections on the Mermin–Wagner theorem (Sect. 2.6), the infra-
red bound (Sect. 2.7) and the chapter on the loop O(n) model (Sect. 3). The
interested reader may find additional information in the recent books of Friedli
and Velenik [50] and Duminil-Copin [38] and in the lecture notes of Bauerschmidt
[10], Biskup [19] and Ueltschi [119].

2 The Spin O(n) Model

2.1 Definitions

Let n ≥ 1 be an integer and let G = (V (G), E(G)) be a finite graph. A configu-
ration of the spin O(n) model, sometimes called the n-vector model, on G is an
assignment σ : V (G) → S

n−1 of spins to each vertex of G, where S
n−1 ⊆ R

n is
the (n − 1)-dimensional unit sphere (simply {−1, 1} if n = 1). We write

Ω := (Sn−1)V (G)

for the space of configurations. At inverse temperature β ∈ [0,∞), configurations
are randomly chosen from the probability measure μG,n,β given by

dμG,n,β(σ) :=
1

Zspin
G,n,β

exp

⎡
⎣β

∑
{u,v}∈E(G)

〈σu, σv〉

⎤
⎦ dσ, (1)
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where 〈·, ·〉 denotes the standard inner product in R
n, the partition function

Zspin
G,n,β is given by

Zspin
G,n,β :=

∫

Ω

exp

⎡
⎣β

∑
{u,v}∈E(G)

〈σu, σv〉

⎤
⎦ dσ (2)

and dσ is the uniform probability measure on Ω (i.e., the product measure of
the uniform distributions on S

n−1 for each vertex in G).

(a) β = 1 (b) β = 1.12

(c) β = 1.5 (d) β = 3

Fig. 1. Samples of random spin configurations in the two-dimensional XY model
(n = 2) at and near the conjectured critical inverse temperature βc ≈ 1.1199 [67,80].
Configurations are on a 500× 500 torus. The angles of the spins are encoded by colors,
with 0◦, 120◦ and 240◦ having colors green, blue and red, and interpolating in between.
The samples are generated using Wolff’s cluster algorithm [120].
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Special cases of the model have names of their own:

– When n = 1, spins take values in {−1, 1} and the model becomes the famous
Ising model. See Fig. 2 for samples from this model.

– When n = 2, spins take values in the unit circle and the model is called the
XY model or the plane rotator model. See Fig. 1 for samples from this model.
See also the two top figures on the cover page which show samples of the XY
model with β = 1.5.

– When n = 3, spins take values in the two-dimensional sphere S
2 and the

model is called the Heisenberg model. See Fig. 3 for samples from this model.
– In a sense, as n tends to infinity the model approaches the Berlin–Kac spher-

ical model (which will not be discussed in these notes), see [18,76,113] and
[13, Chapter 5].

We will sometimes discuss a more general model, in which we replace the
inner product in (1) by a function of that inner product. In other words, when
the energy of a configuration is measured using a more general pair interaction
term. Precisely, given a measurable function U : [−1, 1] → R ∪ {∞}, termed
the potential function, we define the spin O(n) model with potential U to be the
probability measure μG,n,U over configurations σ : V (G) → S

n−1 given by

dμG,n,U (σ) :=
1

Zspin
G,n,U

exp

⎡
⎣−

∑
{u,v}∈E(G)

U(〈σu, σv〉)

⎤
⎦ dσ, (3)

where the partition function Zspin
G,n,U is defined analogously to (2) and where we

set exp(−∞) := 0. Of course, for this to be well defined (i.e., to have finite
Zspin

G,n,U ) some restrictions need to be placed on U but this will always be the
case in the models discussed in these notes.

The spin O(n) model defined in (1) with β ∈ [0,∞) is called ferromagnetic.
If β is taken negative in (1), equivalently U(r) = βr for β > 0 in (3), the model
is called anti-ferromagnetic. On bipartite graphs, the ferromagnetic and anti-
ferromagnetic versions are isomorphic through the map which sends σv to −σv

for all v in one of the partite classes. The two versions are genuinely different on
non-bipartite graphs; see Sects. 3.1 and 3.3 for a discussion of the Ising model
on the triangular lattice.

The model admits many extensions and generalizations. One may impose
boundary conditions in which the values of certain spins are pre-specified. An
external magnetic field can be applied by taking a vector s ∈ R

n and adding a
term of the form

∑
v∈V (G) 〈σv, s〉 to the exponent in the definition of the densities

(1) and (3). The model can be made anisotropic by replacing the standard inner
product 〈·, ·〉 in (1) and (3) with a different inner product. A different single-
site distribution may be imposed, replacing the measure dσ in (1) and (3) with
another product measure on the vertices of G, thus allowing spins to take values
in all of Rn (e.g., taking the single-site density exp(−|σv|4)). We will, however,
focus on the versions of the model described above.
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The graph G is typically taken to be a portion of a d-dimensional lattice, pos-
sibly with periodic boundary conditions. When discussing the spin O(n) model
in these notes we mostly take

G = T
d
L,

where T
d
L denotes the d-dimensional discrete torus of side length 2L defined as

follows: The vertex set of Td
L is

V (Td
L) := {−L + 1,−L + 2, . . . , L − 1, L}d (4)

(a) β = 0.4 < βc (b) β = βc ≈ 0.4407

(c) β = 0.5 > βc (d) β = 0.5 with Dobrushin boundary
conditions

Fig. 2. Samples of random configurations in the two-dimensional Ising model (n = 1)
at and near the critical inverse temperature βc = 1

2
log(1 +

√
2). Configurations are on

a 500 × 500 torus and are generated using Wolff’s cluster algorithm [120]. Dobrushin
boundary conditions corresponds to fixing the top and bottom halves of the boundary
to have different spins.
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and a pair u, v ∈ V (Td
L) is adjacent, written {u, v} ∈ E(Td

L), if u and v are equal
in all but one coordinate and differ by exactly 1 modulo 2L in that coordinate.
We write ‖x− y‖1 for the graph distance in T

d
L of two vertices x, y ∈ V (Td

L) (for
brevity, we suppress the dependence on L in this notation).

The results presented below should admit analogues if the graph G is changed
to a different d-dimensional lattice graph with appropriate boundary conditions.
However, the presented proofs sometimes require the presence of symmetries in
the graph G.

(a) β = 2 (b) β = 10

Fig. 3. Samples of random configurations in the two-dimensional Heisenberg model
(n = 3). Configurations are on a 500 × 500 torus and are generated using Wolff’s
cluster algorithm [120]. It is predicted [101] that there is no phase transition for d = 2
and n ≥ 3 so that correlations decay exponentially at any inverse temperature.

2.2 Main Results and Conjectures

We will focus on the questions of existence of long-range order and decay of
correlations in the spin O(n) model. To this end we shall study the correlation

ρx,y := E(〈σx, σy〉)

for a configuration σ randomly chosen from μ
T

d
L,n,β , the (ferromagnetic) spin

O(n) model at inverse temperature β ∈ [0,∞), and two vertices x, y ∈ V (Td
L)

with large graph distance ‖x − y‖1. The magnitude of this correlation behaves
very differently for different combinations of the spatial dimension d, number
of spin components n and inverse temperature β. The following list summarizes
the main results and conjectures regarding ρx,y. Most of the claims in the list
are elaborated upon and proved in the subsequent sections. We use the notation
cβ , Cβ , cn,β , . . . to denote positive constants whose value depends only on the
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parameters given in the subscript (and is always independent of the lattice size
L) and may change from line to line.

Non-negativity and Monotonicity. The correlation is always non-negative,
that is,

d, n ≥ 1, β ∈ [0,∞) : ρx,y ≥ 0 for all x, y ∈ V (Td
L).

As we shall discuss, this result is a special case of an inequality of Griffiths [63].
It is also natural to expect the correlation to be monotonic non-decreasing in β.
A second inequality of Griffiths [63] implies this for the Ising model and was later
extended by Ginibre [60] to include the XY model and more general settings.
Precisely,

d ≥ 1, n ∈ {1, 2} : for all x, y ∈ V (Td
L), ρx,y is non-decreasing

as β increases in[0,∞).

It appears to be unknown whether this monotonicity holds also for n ≥ 3. Coun-
terexamples exist for related inequalities in certain quantum [71] and classical
[114] spin systems.

High Temperatures and Spatial Dimension d = 1. All the models exhibit
exponential decay of correlations at high temperature. Precisely, there exists a
β0(d, n) > 0 such that

d, n ≥ 1, β < β0(d, n) :

ρx,y ≤ Cd,n,β exp(−cd,n,β‖x − y‖1) for all x, y ∈ V (Td
L). (5)

This is a relatively simple fact and the main interest is in understanding the
behavior at low temperatures. In one spatial dimension (d = 1) the exponential
decay persists at all positive temperatures. That is,

d = 1, n ≥ 1, β ∈ [0,∞) :

ρx,y ≤ Cn,β exp(−cn,β‖x − y‖1) for all x, y ∈ V (T1
L). (6)

The Ising Model n = 1. The Ising model exhibits a phase transition in all
dimensions d ≥ 2 at a critical inverse temperature βc(d). The transition is from
a regime with exponential decay of correlations [1,2,4,42,45]1,

d ≥ 2, n = 1, β < βc(d) : ρx,y ≤ Cd,β exp(−cd,β‖x − y‖1) for all x, y ∈ V (Td
L)

to a regime with long-range order, or spontaneous magnetization, which is char-
acterized by

d ≥ 2, n = 1, β > βc(d) : ρx,y ≥ cd,β for all x, y ∈ V (Td
L).

1 Exponential decay is stated in these references in the infinite-volume limit, but is
derived as a consequence of a finite-volume criterion and is thus implied, as the
infinite-volume measure is unique, also in finite volume.
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The behavior of the model at the critical temperature, when β = βc(d), is
a rich source of study with many mathematical features. For instance, the two-
dimensional model is exactly solvable, as discovered by Onsager [95], and has
a conformally-invariant scaling limit, features of which were first established by
Smirnov [111,112]; see [16,30–32] and references within for recent progress. We
mention that it is proved (see Aizenman, Duminil-Copin, Sidoravicius [6] and
references within) that the model does not exhibit long-range order at its critical
point in all dimensions d ≥ 2. Moreover, in dimension d = 2 it is known [87,100]
(see also [31]) that correlations decay as a power-law with exponent 1/4 at the
critical point, whose exact value is βc(2) = 1

2 log(1 +
√

2) as first determined by
Kramers–Wannier [83] and Onsager [95],

d = 2, n = 1, β = βc(2) : EZ
2
(σxσy) ∼ C‖x − y‖− 1

4
2 , x, y ∈ Z

2, ‖x − y‖2 → ∞,

where we write E
Z
2

for the expectation in the (unique) infinite-volume mea-
sure of the two-dimensional critical Ising model, and ‖·‖2 denotes the standard
Euclidean norm. Lastly, in dimensions higher than some threshold d0, Sakai [103]
proved that

d ≥ d0, n = 1, β = βc(d) :

E
Z

d

(σxσy) ∼ Cd‖x − y‖−(d−2)
2 , x, y ∈ Z

d, ‖x − y‖2 → ∞,

where, as before, EZ
d

is the expectation in the (unique) infinite-volume measure
of the d-dimensional critical Ising model.

The study of the model at or near its critical temperature is beyond the scope
of these notes.

The Mermin–Wagner Theorem: No Continuous Symmetry Breaking
in 2d. Perhaps surprisingly, the behavior of the two-dimensional model when
n ≥ 2, so that the spin space S

n−1 has a continuous symmetry, is quite different
from that of the Ising model. The Mermin–Wagner theorem [88,89] asserts that
in this case there is no phase with long-range order at any inverse temperature
β. Quantifying the rate at which correlations decay has been the focus of much
research along the years [21,36,54,57,69,72,73,75,90,92,99,101,106,107,109]
and is still not completely understood. Improving on earlier bounds, McBryan
and Spencer [86] showed in 1977 that the decay occurs at least at a power-
law rate,

d = 2, n ≥ 2, β ∈ [0,∞) : ρx,y ≤ Cn,β‖x−y‖−cn,β

1 for all x, y ∈ V (T2
L). (7)

The sharpness of this bound is discussed in the next paragraphs.

The Berezinskii–Kosterlitz–Thouless Transition for the 2d XY Model.
It was predicted by Berezinskii [17] and by Kosterlitz and Thouless [81,82] that
the XY model (n = 2) in two spatial dimensions should indeed exhibit power-law
decay of correlations at low temperatures. Thus the model undergoes a phase
transition (of a different nature than that of the Ising model) from a phase



Lectures on the Spin and Loop O(n) Models 255

with exponential decay of correlations to a phase with power-law decay of corre-
lations. This transition is called the Berezinskii–Kosterlitz–Thouless transition.
The existence of the transition has been proved mathematically in the celebrated
work of Fröhlich and Spencer [54], who show that there exists a β1 for which

d = 2, n = 2, β > β1 : EZ
2
(〈σx, σy〉) ≥ cβ‖x − y‖−Cβ

1 for all distinct x, y ∈ Z
2,
(8)

where E
Z
2

denotes expectation in the unique [22] translation-invariant infinite-
volume Gibbs measure of the two-dimensional XY model at inverse tempera-
ture β.

A rigorous proof of the bound (8) is beyond the scope of these notes (see [79]
for a recent presentation of the proof). In Sect. 2.8 we present a heuristic dis-
cussion of the transition highlighting the role of vortices - cycles of length 4 in
T

2
L on which the configuration completes a full rotation. We then proceed to

present a beautiful result of Aizenman [3], following Patrascioiu and Seiler [96],
who showed that correlations decay at most as fast as a power-law in the spin
O(2) model with potential U , for certain potentials U for which vortices are
deterministically excluded.

Polyakov’s Conjecture for the 2d Heisenberg Model. Polyakov [101] pre-
dicted in 1975 that the spin O(n) model with n ≥ 3 should exhibit exponential
decay of correlations in two dimensions at any positive temperature. That is,
that there is no phase transition of the Berezinskii–Kosterlitz–Thouless type in
the Heisenberg model and in the spin O(n) models with larger n. On the torus,
this prediction may be stated precisely as

d = 2, n ≥ 3, β ∈ [0,∞) : ρx,y ≤ Cn,β exp(−cn,β‖x − y‖1) for all x, y ∈ V (T2
L).

Giving a mathematical proof of this statement (or its analog in infinite volume)
remains one of the major challenges of the subject. The best known results in
this direction are by Kupiainen [84] who performed a 1/n-expansion as n tends
to infinity.

The Infra-red Bound: Long-Range Order in Dimensions d ≥ 3. In three
and higher spatial dimensions, the spin O(n) model exhibits long-range order at
sufficiently low temperatures for all n. This was established by Fröhlich, Simon
and Spencer [53] in 1976 who introduced the powerful method of the infra-
red bound, and applied it to the analysis of the spin O(n) and other models.
They prove that correlations do not decay at temperatures below a threshold
β1(d, n)−1, at least in the following averaged sense,

d ≥ 3, n ≥ 1, β > β1(d, n) :
1

|V (Td
L)|2

∑

x,y∈V (Td
L)

ρx,y ≥ cd,n,β .

The proof uses the reflection symmetries of the underlying lattice, relying on the
tool of reflection positivity.
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2.3 Non-negativity and Monotonicity of Correlations

In this section we discuss the non-negativity and monotonicity in temperature
of the correlations ρx,y = E(〈σx, σy〉). To remain with a unified presentation, our
discussion is restricted to the simplest setup with nearest-neighbor interactions.
Many extensions are available in the literature. Recent accounts can be found in
the book of Friedli and Velenik [50, Sections 3.6, 3.8 and 3.9] and in the review
of Benassi–Lees–Ueltschi [15].

We start our discussion by introducing the spin O(n) model with general non-
negative coupling constants. Let N ≥ 1 be an integer and let J = (J{i,j})1≤i<j≤N

be non-negative real numbers. The spin O(n) model with coupling constants J
is the probability measure on (Sn−1)N defined by

dμn,J (σ) :=
1

Zspin
n,J

exp

⎡
⎣ ∑

1≤i<j≤N

J{i,j} 〈σi, σj〉

⎤
⎦ dσ, (9)

where, as before, dσ is the uniform probability measure on (Sn−1)N , Zspin
n,J is

chosen to normalize μn,J to be a probability measure and we refer to the case
n = 1 as the Ising model. When we speak about the spin O(n) model on a
finite graph G = (V (G), E(G)) with coupling constants J = (J{u,v}){u,v}∈E(G),
it should be understood that N = |V (G)|, that the vertex-set V (G) is identified
with {1, . . . , N} and that J{i,j} = 0 for {i, j} /∈ E(G). Thus, the standard spin
O(n) model (1) on G at inverse temperature β is obtained as the special case in
which J{u,v} = β for {u, v} ∈ E(G).

The following non-negativity result is a special case of Griffiths’ first
inequality [63].

Theorem 1. Let N ≥ 1 be an integer and let J = (J{i,j})1≤i<j≤N be non-
negative. If σ is sampled from the Ising model with coupling constants J then

E

(∏
x∈A

σx

)
≥ 0 for all A ⊂ {1, . . . , N}.

Proof. By definition,

E

(∏
x∈A

σx

)
=

1
2NZspin

1,J

∑
σ∈{−1,1}N

(∏
x∈A

σx

)
exp

⎡
⎣ ∑

1≤i<j≤N

J{i,j}σiσj

⎤
⎦ .

Using the Taylor expansion et =
∑∞

m=0
tm

m! , we conclude that E(σxσy) is an
absolutely convergent series with non-negative coefficients of products of the
values of σ on various vertices. That is,

E

(∏
x∈A

σx

)
=

∑
σ∈{−1,1}N

∑

m∈{0,1,2,...}N

Cm

∏
1≤i≤N

σmi
i ,
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where each Cm = Cm(A) ≥ 0 and the series is absolutely convergent (in addition,
one may, in fact, restrict to m ∈ {0, 1}N as when ε ∈ {−1, 1} we have εk = ε
or εk = 1 according to the parity of k). The non-negativity of E(

∏
x∈A σx) now

follows as, for each m ∈ {0, 1, 2, . . .}N ,

∑
σ∈{−1,1}N

∏
1≤i≤N

σmi
i =

∏
1≤i≤N

((−1)mi + 1mi) =

{
2N miis even for all i

0 otherwise
. ��

Exercise. Give an alternative proof of Theorem1 by extending the derivation
of the Edwards–Sokal coupling in Sect. 2.4 below to the Ising model with general
non-negative coupling constants and arguing similarly to Remark 1.

We now deduce non-negativity of correlations for the spin O(n) models with
n ≥ 2 by showing that conditioning on n − 1 spin components induces an
Ising model with non-negative coupling constants on the sign of the remain-
ing spin component. The argument applies to spin O(n) models with potential
U : [−1, 1] → R∪ {∞} (see (3)) as long as the potential is non-increasing in the
sense that

U(r1) ≥ U(r2) when r1 ≤ r2. (10)

This property implies that configurations in which adjacent spins are more
aligned (i.e., have larger inner product) have higher density, a characteristic
of ferromagnets.

To state the above precisely, we embed S
n−1 into R

n so as to allow writing
the coordinates of a configuration σ : V (G) → S

n−1 explicitly as

σv = (σ1
v , σ2

v , . . . , σn
v ) at each vertex v ∈ V (G).

For 1 ≤ j ≤ n, we write σj for the function (σj
v), v ∈ V (G). We also introduce

a function ε : V (G) → {−1, 1} defined uniquely by σ1
v = |σ1

v |εv (when σ1
v = 0,

we arbitrarily set εv := 0). We note that σ is determined by (ε, σ2, . . . , σn) since
σ1

v = εv|σ1
v | and |σ1

v | is determined from (σj
v)2≤j≤n as σv ∈ S

n−1.

Theorem 2. Let n ≥ 2, G = (V (G), E(G)) be a finite graph and let U :
[−1, 1] → R ∪ {∞} be non-increasing. If σ is sampled from the spin O(n) model
on G with potential U , then, conditioned on (σ2, σ3, . . . , σn), the random signs
ε are distributed as an Ising model on G with coupling constants J given by

J{u,v} := −1
2
U

⎛
⎝|σ1

u| · |σ1
v | +

n∑
j=2

σj
uσj

v

⎞
⎠ +

1
2
U

⎛
⎝−|σ1

u| · |σ1
v | +

n∑
j=2

σj
uσj

v

⎞
⎠ .

In particular, the coupling constants are non-negative so that for all x, y ∈ V (G),

E(〈σx, σy〉) ≥ 0 and E
(
εxεy | (σj)2≤j≤n

)
≥ 0 almost surely.



258 R. Peled and Y. Spinka

Proof. Observe that the density of ε conditioned on (σj)2≤j≤n (with respect to
the uniform measure on {−1, 1}V (G)) is proportional to

exp

[
−

∑
{u,v}∈E(G)

U(〈σu, σv〉)
]

= exp

[
−

∑
{u,v}∈E(G)

U

(
|σ1

u| · |σ1
v |εuεv +

n∑
j=2

σj
uσj

v

)]

= exp

[ ∑
{u,v}∈E(G)

(
J{u,v}εuεv + I{u,v}

)
]

= I · exp

[ ∑
{u,v}∈E(G)

J{u,v}εuεv

]
,

where I{u,v} and I are measurable with respect to (σj)2≤j≤n. We conclude that,
conditioned on (σj)2≤j≤n, the signs ε are distributed as an Ising model on G
with coupling constants J = (J{u,v}){u,v}∈E(G).

By the assumption that U is non-increasing, the coupling constants are
almost surely non-negative. Thus, Theorem1 implies that

E
(
εxεy | (σj)2≤j≤n

)
≥ 0 almost surely for every x, y ∈ V (G).

Finally, to see that E(〈σx, σy〉) ≥ 0, note that

E(〈σx, σy〉) = E

⎛
⎝

n∑
j=1

σj
xσj

y

⎞
⎠ = nE

(
σ1

xσ1
y

)
,

as the distribution of σ is invariant to global rotations (that is, for any n × n
orthogonal matrix O, σ has the same distribution as (Oσv), v ∈ V (G), by the
choice of density (3)). In particular,

E(〈σx, σy〉) = nE
(
E
(
σ1

xσ1
y | (σj)2≤j≤n

))

= nE
(
|σ1

x| · |σ1
y| · E

(
εxεy | (σj)2≤j≤n

))
≥ 0.

��

We remark that Theorem 2 and its proof may be extended in a straightfor-
ward manner to the case that different non-increasing potentials are placed on
different edges of the graph.

As another remark, we note that the non-negativity of E(〈σx, σy〉) asserted
by Theorem 2 may fail for potentials which are not non-increasing. For instance,
the discussion of the anti-ferromagnetic spin O(n) model in Sect. 2.1 shows that,
on bipartite graphs G and with x and y on different bipartition classes, the
sign of E(〈σx, σy〉) in the spin O(n) model is reversed when replacing β by −β
in (1). A similar remark applies to the assertion of Theorem 1 when some of the
coupling constants are negative.
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Lastly, we mention that the assumptions of Theorem 2 imply a stronger con-
clusion than the non-negativity of E(〈σx, σy〉). In [33] it is shown that conditioned
on σx, there is a version of the density of σy (with respect to the uniform measure
on S

n−1) which is a non-decreasing function of 〈σx, σy〉.
We move now to discuss the monotonicity of correlations with the inverse

temperature β in the spin O(n) model. This was first established by Griffiths for
the Ising case [63] and is sometimes referred to as Griffiths’ second inequality.
It was established by Ginibre [60] for the XY case (the case n = 2) and in more
general settings. Establishing or refuting such monotonicity when n ≥ 3 is an
open problem of significant interest.

We again work in the generality of the spin O(n) model with non-negative
coupling constants.

Theorem 3. Let n ∈ {1, 2}, let N ≥ 1 be an integer and let J = (J{i,j})1≤i<j≤N

be non-negative. If σ is sampled from the spin O(n) model with coupling constants
J then

E (〈σx, σy〉 · 〈σz, σw〉) ≥ E (〈σx, σy〉) · E (〈σz, σw〉) for all 1 ≤ x, y, z, w ≤ N.
(11)

In other words, the random variables 〈σx, σy〉 and 〈σz, σw〉 are non-negatively
correlated.

The theorem implies that each correlation E (〈σx, σy〉) is a monotone non-
decreasing function of each coupling constant J{z,w}. Indeed, in the setting of
the theorem, one checks in a straightforward manner that, for all 1 ≤ x, y ≤ N
and 1 ≤ z < w ≤ N ,

∂

∂J{z,w}
E (〈σx, σy〉) = E (〈σx, σy〉 · 〈σz, σw〉) − E (〈σx, σy〉) · E (〈σz, σw〉)

(11)

≥ 0.

This monotonicity property is exceedingly useful as it allows to compare the
correlations of the spin O(n) model on different graphs by taking limits as var-
ious coupling constants tend to zero or infinity (corresponding to deletion or
contraction of edges of the graph). For instance, one may use it to establish
the existence of the infinite-volume (thermodynamic) limit of correlations in the
spin O(n) model (n ∈ {1, 2}) on Z

d, or to compare the behavior of the model in
different spatial dimensions d.

The following lemma, introduced by Ginibre [60], is a key step in the proof
of Theorem 3. Sylvester [114] has found counterexamples to the lemma when
n ≥ 3.

Lemma 1. Let n ∈ {1, 2} and let N ≥ 1 be an integer. Then for every choice
of non-negative integers (k{i,j}), (�{i,j}), 1 ≤ i < j ≤ N , we have
∫ ∫ ∏

1≤i<j≤N

(〈σi, σj〉−
〈
σ′

i, σ
′
j

〉
)k{i,j} · (〈σi, σj〉+

〈
σ′

i, σ
′
j

〉
)�{i,j}dσdσ′ ≥ 0, (12)

where, as before, dσ and dσ′ denote the uniform probability measure on (Sn−1)N .
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Proof. The change of variables (σ, σ′) �→ (σ′, σ) preserves the measure dσdσ′

and reverses the sign of each term of the form 〈σi, σj〉 −
〈
σ′

i, σ
′
j

〉
while keeping

terms of the form 〈σi, σj〉 +
〈
σ′

i, σ
′
j

〉
fixed. The lemma thus follows in the case

that
∑

1≤i<j≤N k{i,j} is odd as the integral in (12) evaluates to zero. Let us then
assume that ∑

1≤i<j≤N

k{i,j} is even. (13)

Identifying S
1 with the unit circle in the complex plane and using that n ∈ {1, 2},

we may express the spins as σj = eiθj and σ′
j = eiθ′

j . With this notation, we
have

〈σi, σj〉 −
〈
σ′

i, σ
′
j

〉
= cos(θi − θj) − cos(θ′

i − θ′
j)

= −2 sin
(

θi + θ′
i

2
−

θj + θ′
j

2

)
sin

(
θi − θ′

i

2
−

θj − θ′
j

2

)
,

(14)
and similarly,

〈σi, σj〉 +
〈
σ′

i, σ
′
j

〉
= 2 cos

(
θi + θ′

i

2
−

θj + θ′
j

2

)
cos

(
θi − θ′

i

2
−

θj − θ′
j

2

)
.

Thus, using (13) to cancel the minus sign in the right-hand side of (14), we may
write
∫ ∫ ∏

1≤i<j≤N

(〈σi, σj〉 −
〈
σ′

i, σ
′
j

〉
)k{i,j} ·(〈σi, σj〉 +

〈
σ′

i, σ
′
j

〉
)�{i,j}dσdσ′

=
∫ ∫

F (θ + θ′)F (θ − θ′)dσdσ′ =: I

for a real-valued function F , satisfying the condition that F (θ + θ′)F (θ − θ′)
remains invariant when adding integer multiplies of 2π to any of the coordinates
of θ or to any of the coordinates of θ′. We now consider the cases n = 1 and
n = 2 separately.

Suppose first that n = 2. Writing dθ, dθ′ for Lebesgue measure on R
N , and

using the above invariance property of F , we have

I =
1

(8π2)N

∫

[−2π,2π]N

∫

[−π,π]N
F (θ + θ′)F (θ − θ′)dθdθ′.

One may regard the domain of integration above as ([−2π, 2π]× [−π, π])N . Con-
sider E0 := [−2π, 2π]×[−π, π], the projection of this domain onto one coordinate
of (θ, θ′). We shall split this domain into pieces and then rearrange them so as
to obtain a square domain with side-length 2

√
2π rotated by 45◦ and symmetric

about the origin, i.e., the domain defined by E1 := {(θ, θ′) ∈ R
2 : |θ ± θ′| ≤ 2π}.

Indeed, each of the differences E0 \ E1 and E1 \ E0 consists of four triangular
pieces, each being an isosceles right triangle with side-length π and sides parallel
to the axis, so that these pieces can be rearranged to obtain E1 from E0. In fact,



Lectures on the Spin and Loop O(n) Models 261

the only operations involved in this procedure are translations by multiples of
2π in the direction of the axes. Thus, using the above invariance property of F ,
we conclude that I can be written as

I =
1

(8π2)N

∫ ∫

(E1)N

F (θ + θ′)F (θ − θ′)dθdθ′.

The change of variables (θ, θ′) �→ (θ + θ′, θ − θ′) now shows that I is the square
of an integral of a real-valued function and hence is non-negative.

The case n = 1 is treated similarly, though one must take extra care in
handling boundaries between domains of integration, as these no longer need to
have measure zero. Writing dθ, dθ′ for the counting measure on (πZ)N , we have

I =
1

8N

∫

{−π,0,π,2π}N

∫

{0,π}N

F (θ + θ′)F (θ − θ′)dθdθ′.

As before, we consider a single coordinate of (θ, θ′). Observe that there is quite
some freedom in changing the domain of integration E0 := {−π, 0, π, 2π}×{0, π}
without effecting the integral. Consider for instance the domain E′

0 obtained
from E0 by removing the points {(−π, π), (2π, π)} and adding {(0,−π), (π,−π)}
instead. By the invariance property of F , the integral on E′

0 is the same as on
E0. To conclude as before that I is non-negative, it suffices to find a domain of
integration E1, which coincides with E′

0 on (πZ)2, and which is a 45◦ rotated
square (i.e., the product of an interval with itself in the (θ+θ′, θ−θ′) coordinates).
Indeed, one may easily verify that E1 := {(θ, θ′) : −3/2 ≤ θ ± θ′ ≤ 5/2} is such
a domain.

Proof of Theorem 3. Let σ and σ′ be two independent samples from the spin
O(n) model with coupling constants J . Then

2Cov (〈σx, σy〉 , 〈σz, σw〉) = E
[ (

〈σx, σy〉 −
〈
σ′

x, σ′
y

〉)
· (〈σz, σw〉 − 〈σ′

z, σ
′
w〉)

]
.

Thus, it suffices to show that the expectation on the right-hand side is non-
negative. Indeed, denoting S±

{i,j} := 〈σi, σj〉 ±
〈
σ′

i, σ
′
j

〉
, this expectation is equal

to
1(

Zspin
n,J

)2

∫ ∫
S−

{x,y} · S−
{z,w} · exp

⎡
⎣ ∑

1≤i<j≤N

J{i,j}S
+
{i,j}

⎤
⎦ dσdσ′,

which, by expanding the exponent into a Taylor’s series, is equal to

1(
Zspin

n,J

)2

∑
m∈{0,1,2,... }{{i,j}:1≤i<j≤N}

Cm

∫ ∫
S−

{x,y} · S−
{z,w}

×
∏

1≤i<j≤N

(
S+

{i,j}
)m{i,j}

dσdσ′,

where each Cm is non-negative and the series is absolutely convergent. The
desired non-negativity now follows from Lemma 1.
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We are not aware of other proofs for Griffiths’ second inequality, Theorem3,
for the XY model (n = 2). The above proof may also be adapted to treat clock
models, models of the XY type in which the spin is restricted to roots of unity of a
given order (the ticks of the clock), see [60]. Alternative approaches are available
in the Ising case (n = 1): One proof relies on positive association (FKG) for the
corresponding random-cluster model (see also Remark 1). A different argument
of Ginibre [59] deduces Theorem 3 directly from Theorem 1.

2.4 High-Temperature Expansion

At infinite temperature (β = 0) the models are completely disordered, having
all spins independent and uniformly distributed on S

n−1. In this section we
show that the disordered phase extends to high, but finite, temperatures (small
positive β). Specifically, we show that the models exhibit exponential decay of
correlations in this regime, as stated in (5) and (6).

We begin by expanding the partition function of the model on an arbitrary
finite graph G = (V (G), E(G)) in the following manner. Denoting fβ(s, t) :=
exp

[
β
(
〈s, t〉 + 1

)]
− 1 for s, t ∈ S

n−1, we have

Zspin
G,n,β =

∫

Ω

∏
{u,v}∈E(G)

exp [β 〈σu, σv〉] dσ

= e−β|E(G)|
∫

Ω

∏
{u,v}∈E(G)

exp [β (〈σu, σv〉 + 1)] dσ

= e−β|E(G)|
∫

Ω

∏
{u,v}∈E(G)

(
1 + fβ(σu, σv)

)
dσ

= e−β|E(G)| ∑
E⊂E(G)

∫

Ω

∏
{u,v}∈E

fβ(σu, σv)dσ. (15)

Exercise. Verify the last equality in the above expansion by showing that for
any (xe)e∈E , ∏

e∈E
(1 + xe) =

∑
E⊂E

∏
e∈E

xe.

Thus, we have
Zspin

G,n,β = e−β|E(G)| ∑
E⊂E(G)

Z(E), (16)

where
Z(E) :=

∫

Ω

∏
{u,v}∈E

fβ(σu, σv)dσ. (17)

Since fβ is non-negative, we may interpret (16) as prescribing a probability mea-
sure on (spanning) subgraphs of G, where the subgraph (V (G), E) has proba-
bility proportional to Z(E). Furthermore, given such a subgraph, we may inter-
pret (17) as prescribing a probability measure on spin configurations σ, whose
density with respect to dσ is proportional to
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Z(E, σ) :=
∏

{u,v}∈E

fβ(σu, σv).

Remark 1. For the Ising model (n = 1), the above joint distribution on the
graph (V (G), E) and spin configuration σ is called the Edwards–Sokal coupling
[47]. Here, the marginal probability of E is proportional to

qN(E)p|E| (1 − p)|E(Td
L)|\|E| with q = 2 and p = 1 − exp(−2β), (18)

where N(E) stands for the number of connected components in (V (G), E). More-
over, given E, the spin configuration σ is sampled by independently assigning
to the vertices in each connected component of (V (G), E) the same spin value,
picked uniformly from {−1, 1}. The marginal distribution (18) of E is the famous
Fortuin–Kasteleyn (FK) random-cluster model, which makes sense also for other
values of p and q [65]. Both the Edwards–Sokal coupling and the FK model are
available also for the more general Potts models.

The Edwards–Sokal coupling immediately implies that, for the Ising model,
the correlation ρx,y = E(σxσy) equals the probability that x is connected to y in
the graph (V (G), E). In particular, ρx,y is non-negative (as in Theorem 1) and,
as connectivity probabilities in the FK model (with q ≥ 1) are non-decreasing
with p [65, Theorem 3.21], it follows also that ρx,y is non-decreasing with the
inverse temperature β (as in Theorem 3).

Remark 2. Conditioned on E, the spin configuration σ may be seen as a sam-
ple from the spin O(n) model on the graph (V (G), E) with potential U(x) :=
− log(exp(β(1+x))−1). That is, conditioned on E, the distribution of σ is given
by μ(V (G),E),n,U .

It follows from the last remark that, conditioned on E,

If x ∈ V (G) then σx is distributed uniformly on S
n−1.

If x, y ∈ V (G) are not connected in (V (G), E) then σx and σy are independent.

Hence, we deduce that E(〈σx, σy〉 | E) = 0 when x and y are not connected in
(V (G), E). Since |〈σx, σy〉| ≤ 1, we obtain

|ρx,y| ≤ P(x and y are connected in (V (G), E)),

where E is a random subset of E(G) chosen according to the above probability
measure. Thus, to establish the decay of correlations, it suffices to show that
long connections in E are very unlikely. We first show that

for any e ∈ E(G) and E0 ⊂ E(G) \ {e}, P(e ∈ E | E \ {e} = E0) ≤ 1 − e−2β .
(19)

Indeed,

P(e ∈ E | E \ {e} = E0) =
Z(E0 ∪ {e})

Z(E0 ∪ {e}) + Z(E0)
=

1

1 + Z(E0)
Z(E0∪{e})

,
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and denoting e = {u, v} and noting that fβ(s, t) ≤ exp(2β) − 1,

Z(E0 ∪ {e})
Z(E0)

=

∫
Ω

Z(E0 ∪ {e}, σ)dσ∫
Ω

Z(E0, σ)dσ
=

∫
Ω

Z(E0, σ)fβ(σu, σv)dσ∫
Ω

Z(E0, σ)dσ
≤ e2β − 1.

Repeated application of (19) now yields that the probability that E contains
any fixed k edges is exponentially small in k. Namely,

for any e1, . . . , ek ∈ E(G), P(e1, . . . , ek ∈ E) ≤
(
1 − e−2β

)k
.

We now specialize to the case G = T
d
L (in fact, the only property of T

d
L

we use is that its maximum degree is 2d). Since the event that x and y are
connected in (V (G), E) implies the existence of a simple path in E of some
length k ≥ ‖x−y‖1 starting at x, and since the number of such paths is at most
2d(2d − 1)k−1 ≤ 2(2d − 1)k, we obtain

P(x and y are connected in (V (G), E)) ≤
∞∑

k=‖x−y‖1

2(2d − 1)k(1 − e−2β)k

≤ Cd,β

(
(2d − 1)(1 − e−2β)

)‖x−y‖1

,

when (2d − 1)(1 − e−2β) < 1. Thus, we have established that

|ρx,y| ≤ Cd,β exp (−cd,β‖x − y‖1) when β <
1
2

log
(

2d − 1
2d − 2

)
.

Remark 3. This gives exponential decay in dimension d ≥ 2 whenever β ≤ 1/4d
and in one dimension for all finite β.

Fisher [49] established an improved lower bound for the critical inverse tem-
perature βc(d) for long-range order in the d-dimensional Ising model, showing
that tanh(βc(d)) ≥ 1

μ(d) , where μ(d) is the connective constant of Zd (the expo-
nential growth rate of the number of self-avoiding walks of length n on Z

d as
n → ∞). Since there are fewer self-avoiding walks than non-backtracking walks,
we have the simple bound μ(d) ≤ 2d − 1, which implies that βc(d) ≥ 1+o(1)

2d as
d → ∞. A similar bound was proved by Griffiths [64]. Simon [108] establishes a
bound of the same type for spin O(n) models with n ≥ 2, proving the absence
of spontaneous magnetization when β < n

2d . An upper bound with matching
asymptotics as d → ∞ is proved via the so-called infra-red bound in Sect. 2.7
below.

Fisher’s technique is based on a Kramers–Wannier [83] expansion of the Ising
model partition function. This expansion, different from (15), relates the model
to a probability distribution over even subgraphs (subgraphs in which the degrees
of all vertices are even). A special case of the expansion is described in Sect. 3.2
(see remark there).
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2.5 Low-Temperature Ising Model - The Peierls Argument

One can approach the low-temperature Ising model using the Kramers–Wannier
expansion mentioned in Remark 3 and Sect. 3.2. Here, however, we follow a
slightly different route, presenting the classical Peierls argument [97] which is
useful in many similar contexts.

Let G be a finite connected graph and let x, y ∈ V (G) be two vertices. We
begin by noting that in the Ising model, since spins take values in {−1, 1}, we
may write the correlations in the following form:

ρx,y = E(σxσy) = P(σx = σy) − P(σx �= σy) = 1 − 2P(σx �= σy).

Thus, to establish a lower bound on the correlation, we must provide an upper
bound on the probability that the spins at x and y are different. To this end,
we require some definitions. Given a set of vertices A ⊂ V (G), we denote the
edge-boundary of A, the set of edges in E(G) with precisely one endpoint in
A, by ∂A. A contour is a set of edges γ ⊂ E(G) such that γ = ∂A for some
A ⊂ V (G) satisfying that both A and Ac := V (G) \ A are induced connected
(non-empty) subgraphs of G. Thus, a contour can be identified with a partition
of the set of vertices of G into two connected sets. We say that γ separates two
vertices x and y if they belong to different sets of the corresponding partition.
The length of a contour is the number of edges it contains.

Exercise. A set of edges γ is a contour if and only if γ is cutset (i.e., the removal
of γ disconnects the graph) which is minimal with respect to inclusion (i.e., no
proper subset of γ is also a cutset).

Let σ be a spin configuration. We say that γ is an interface (with respect to
σ) if γ is a contour separating x and y such that

σu �= σv for all {u, v} ∈ γ.

The first step in the proof is the following observation:

if σx �= σy then there exists an interface. (20)

Indeed, if σx �= σy then the connected component of {u ∈ V (G) : σu = σx}
containing x, which we denote by B, does not contain y. Hence, if we denote
the connected component of Bc containing y by A, then γ := ∂A is a contour
separating x and y. Moreover, it is easy to check that σu = σx and σv = σy for
all {u, v} ∈ γ such that u ∈ Ac and v ∈ A, so that γ is an interface.

Next, we show that for any fixed contour γ of length k,

P(γ is an interface) ≤ e−2βk. (21)

To see this, let {A,Ac} be the partition corresponding to γ and, given a spin
configuration σ, consider the modified spin configuration σ′ in which the spins
in A are flipped, i.e.,

σ′
u :=

{
−σu if u ∈ A

σu if u ∈ Ac
.
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Observe that if γ is an interface with respect to σ then
∑

{u,v}∈E(G)

σ′
uσ′

v −
∑

{u,v}∈E(G)

σuσv =
∑

{u,v}∈γ

(σ′
uσ′

v − σuσv) = 2|γ|.

Thus, denoting F := {σ ∈ Ω : γ is an interface with respect to σ} and noting
that σ �→ σ′ is injective on Ω (in fact, an involution of Ω), we have

P(γ is an interface) =

∑
σ∈F exp

[
β
∑

{u,v}∈E(G) σuσv

]

∑
σ∈Ω exp

[
β
∑

{u,v}∈E(G) σuσv

]

≤
∑

σ∈F exp
[
β
∑

{u,v}∈E(G) σuσv

]

∑
σ∈F exp

[
β
∑

{u,v}∈E(G) σ′
uσ′

v

] = e−2β|γ|.

The final ingredient in the proof is an upper bound on the number of contours
of a given length. For this, we henceforth restrict ourselves to the case G = T

d
L,

for which we use the following fact:

The number of contours of length k

separating two given vertices is at most eCdk. (22)

The proof of this fact consists of the following two lemmas.

Lemma 2. Let γ be a set of edges and consider the graph Gγ on γ in which two
edges e, f ∈ γ are adjacent if the (d − 1)-dimensional faces corresponding to e
and f share a common (d − 2)-dimensional face. If γ is a contour then either
Gγ is connected or every connected component of Gγ has size at least Ld−1.

Although intuitively clear, the proof of the above lemma is not completely
straightforward. Timár gave a proof [118] of the analogous statement in Z

d (in
which case the graph Gγ is always connected) via elementary graph-theoretical
methods. In our case, there is an additional complication due to the topology of
the torus (indeed, the graph Gγ need not be connected - although it can have
only two connected components - a fact for which we do not have a simple proof).
We refer the reader to [98] for a proof.

Lemma 3. Let G be a graph with maximum degree Δ. The number of connected
subsets of V (G) which have size k and contain a given vertex is at most a(Δ)k,
where a(Δ) is a positive constant depending only on Δ.

This lemma has several simple proofs. One may for instance use a depth-
first-search algorithm to provide a proof with the constant a(Δ) = Δ2. We refer
the reader to [20, Chapter 45] for a proof yielding the constant a(Δ) = e(Δ − 1)
(which is optimal when Δ ≥ 3 as can be seen by considering the case when G is
a regular tree).

Exercise. Deduce fact (22) from the two lemmas.
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Finally, putting together (20), (21) and (22), when β ≥ Cd, we obtain

P(σx �= σy) ≤ P(there exists an interface) ≤
∑

γ contour
separating x and y

P(γ is an interface)

≤
∞∑

k=1

eCdke−2βk ≤ Cde
−2β .

Thus, in terms of correlations, we have established that

ρx,y ≥ 1 − Cde
−2β ≥ cd,β when β ≥ Cd.

Remark 4. Specializing Lemma 3 to the relevant graph in our situation, one may
obtain an improved and explicit bound of exp(Ck log(d + 1)/d) on the number
of contours of length k separating two given vertices [9,85]. This gives that
βc(d) ≤ C log(d + 1)/d. In fact, the correct asymptotic value is βc(d) ∼ 1/2d as
d → ∞, as follows by combining Fisher’s bound in Remark 3 with Theorem 5
below.

Aizenman, Bricmont and Lebowitz [5] point out that a gap between the
true value of βc(d) and the bound on βc(d) obtained from the Peierls argument
is unavoidable in high dimensions. They point out that the Peierls argument,
when it applies, excludes the possibility of minority percolation. That is, the
possibility to have an infinite connected component of −1 spins in the infinite-
volume limit obtained with +1 boundary conditions. However, as they show, such
minority percolation does occur in high dimensions when β ≤ c log d

d , yielding a
lower bound on the minimal inverse temperature at which the Peierls argument
applies.

2.6 No Long-Range Order in Two Dimensional Models with
Continuous Symmetry - The Mermin–Wagner Theorem

In this section, we establish power-law decay of correlations for the two-
dimensional spin O(n) model with n ≥ 2 at any positive temperature. The
proof applies in the generality of the spin O(n) model with potential U , where
U satisfies certain assumptions, and it is convenient to present it in this context,
to highlight the core parts of the argument. The fact that there is no long-
range order was first established by Mermin and Wagner [88,89]2, with later
works providing upper bounds on the rate of decay of the correlations. Power-
law decay of correlations for the standard XY model was first established by
McBryan and Spencer [86] who used analytic function techniques. The following
theorem which generalizes the result to C2 potentials was subsequently proved
by Shlosman [107] using methods developed by Dobrushin and Shlosman [36].

Theorem 4. Let n ≥ 2. Let U : [−1, 1] → R be twice continuously differentiable.
Suppose that σ : V (T2

L) → S
n−1 is randomly sampled from the two-dimensional

2 A related intuition was mentioned earlier by Herring and Kittel [68, Footnote 8a].
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spin O(n) model with potential U (see (3)). Then there exist Cn,U , cn,U > 0 such
that

|ρx,y| = |E(〈σx, σy〉)| ≤ Cn,U‖x − y‖−cn,U

1 for all x, y ∈ V (T2
L). (23)

The proof presented below combines elements of the Dobrushin–Shlosman [36]
and Pfister [99] approaches to the Mermin–Wagner theorem. The idea to com-
bine the approaches is introduced in a forthcoming paper of Gagnebin, Mi�loś and
Peled [56], where it is pushed further to prove power-law decay of correlations
for any measurable potential U satisfying only very mild integrability assump-
tions. The work [56] relies further on ideas used by Ioffe–Shlosman–Velenik [72],
Richthammer [102] and Mi�loś–Peled [91].

For simplicity, we will prove Theorem4 in the special case that n = 2, x =
(1, 0) and y = (2m, 0) for some positive integer m (assuming, implicitly, that
L ≥ 2m). We briefly explain the necessary modifications for the general case
after the proof.

Fix a C2 function U : [−1, 1] → R. Suppose that σ : V (T2
L) → S

1 is ran-
domly sampled from the two-dimensional spin O(2) model with potential U . It
is convenient to parametrize configurations differently: Identifying S

1 with the
unit circle in the complex plane, we consider the angle θv that each vector σv

forms with respect to the x-axis. Precisely, for the rest of the argument, we let
θ : V (T2

L) → [−π, π) be randomly sampled from the probability density

t(φ) :=
1
Z

exp

⎡
⎣−

∑
{u,v}∈E(T2

L)

U(cos(φu − φv))

⎤
⎦ ∏

v∈V (T2
L)

1(φv∈[−π,π)), (24)

with respect to the product uniform measure, where Z is a normalization con-
stant. One checks simply that then (σv) is equal in distribution to (exp(iθv)).
Thus, with our choice of the vertices x and y, the estimate (23) that we would
like to prove becomes

|ρ(1,0),(2m,0)| = |E(cos(θ(2m,0) − θ(1,0)))| ≤ Cn,U · 2−cn,U ·m. (25)

Step 1: Product of Conditional Correlations. We start by pointing out a
conditional independence property inherent in the distribution of θ, which is a
consequence of the domain Markov property and the fact that the interaction
term in (24) depends only on the difference of angles in φ (the gradient of
φ). This part of the argument is inspired by the technique of Dobrushin and
Shlosman [36].

We divide the domain into “layers”, where the �-th layer, 0 ≤ � ≤ m, corre-
sponds to distance 2� from the origin. Denote the values and the gradients of θ
on the �-th layer by

θ=� :=
(
θv : ‖v‖1 = 2�

)
and ∇θ=� :=

(
θu − θv : ‖u‖1, ‖v‖1 = 2�

)
.

Similarly, we write θ≤� and ∇θ≤� for the values/gradients of θ inside the �-th layer
(i.e., for u, v with ‖u‖1, ‖v‖1 ≤ 2�) and θ≥� and ∇θ≥� for the values/gradients
outside (i.e., for u, v with ‖u‖1, ‖v‖1 ≥ 2�).
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Proposition 1. Conditioned on ∇θ=�, we have that ∇θ≤� and θ≥� are
independent.

Proof. Consider the random variables θ<� and ∇θ<�, defined in the obvious way.
It is straightforward from the definition of the density (24) of θ that, conditioned
on θ≥�, θ<� almost surely has a density and that this density depends only on
θ=�. In particular, conditioned on θ≥�, ∇θ<� has a density which depends only on
θ=�. Finally, since the interaction term in (24) depends only on the gradients ∇θ,
we conclude that the density of ∇θ<� given θ≥� depends only on the gradients
∇θ=�. Therefore, ∇θ<�, and hence ∇θ≤�, is conditionally independent of θ≥�

given ∇θ=�.

Proposition 1 implies in particular that, conditioned on ∇θ=�, the gradients
∇θ≤� and ∇θ≥� are independent. It follows from abstract arguments that, con-
ditioned on (∇θ=k)1≤k≤m, the gradients ∇θ≤� and ∇θ≥� are independent. For
convenience, we state this claim in a general form in the following exercise.

Exercise. Suppose X,Y,Z are random variables satisfying that X is condition-
ally independent of Y given Z. Then for every two measurable functions f and
g, X is conditionally independent of Y given (f(X), g(Y ), Z).

In particular, conditioned on (∇θ=k)1≤k≤m, the random variables (θ(2k,0) −
θ(2k−1,0))1≤k≤� and (θ(2k,0) − θ(2k−1,0))�<k≤m are independent. Since this holds
for all 1 ≤ � ≤ m, it follows again by abstract arguments that, conditioned
on (∇θ=k)1≤k≤m, the random variables (θ(2�,0) − θ(2�−1,0))1≤�≤m are mutually
independent3. Once again, we state this general claim in an exercise.

Exercise. Suppose X1, . . . , Xm, Z are random variables satisfying that, for any
1 ≤ � ≤ m, (X1, . . . , X�) is conditionally independent of (X�+1, . . . , Xm) given
Z. Then (X1, . . . , Xm) are mutually conditionally independent given Z.

The above conditional independence therefore allows us to reexpress the
quantity of interest to us as a product of expectations in the following way:

E(cos(θ(2m,0) − θ(1,0)))

= �E

(
ei(θ(2m,0)−θ(1,0))

)

= �E

(
m∏

�=1

ei(θ(2�,0)−θ(2�−1,0))
)

= �E

(
m∏

�=1

E

(
ei(θ(2�,0)−θ(2�−1,0)) | (∇θ=k)1≤k≤m

))
. (26)

This will be the starting point for our next step.

Step 2: Upper Bound on the Conditional Correlations. In this step,
we estimate the individual conditional expectations in (26), proving that there
exists an absolute constant ε > 0 for which, almost surely,
3 In fact, more is true, conditioned on (∇θ=k)1≤k≤m, the σ-algebras of ∇θ�−1≤·≤� are

independent for 1 ≤ � ≤ m, where ∇θ�−1≤·≤� is the collection of gradients θu − θv

with 2�−1 ≤ ‖u‖1, ‖v‖1 ≤ 2�.
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∣∣∣E
(
ei(θ(2�,0)−θ(2�−1,0)) | (∇θ=k)1≤k≤m

)∣∣∣ ≤ 1 − ε for all 1 ≤ � ≤ m, (27)

immediately implying the required bound (25) as, from (26),

∣∣E(cos(θ(2m,0) − θ(1,0)))
∣∣ ≤ E

(
m∏

�=1

∣∣∣E
(
ei(θ(2�,0)−θ(2�−1,0)) | (∇θ=k)1≤k≤m

)∣∣∣
)

≤ (1 − ε)m.

This part of the argument is inspired by the technique of Pfister [99], and the
variants used in [91,102]. The idea of introducing a spin wave which rotates
slowly (our function τ below and its property (33)) is at the heart of the Mermin–
Wagner theorem.

Define a vector-valued function g on R
V (T2

L) by

g(φ) :=
(
φu − φv : u, v ∈ V (T2

L), ∃ 1 ≤ k ≤ m, ‖u‖1 = ‖v‖1 = 2k
)
,

so that g(θ) and (∇θ=k)1≤k≤m represent the same random variable. Write dmg0

for the lower-dimensional Lebesgue measure supported on the affine subspace of
R

V (T2
L) where g(φ) = g0. Standard facts (following from Fubini’s theorem) imply

that conditioned on g(θ) = g0, for almost every value of g0 (with respect to the
distribution of g(θ)), the density of θ exists with respect to dmg0 and is of the
form (as in (24))

tg0(φ) =
1

Zg0

exp

⎡
⎣−

∑
{u,v}∈E(T2

L)

U(cos(φu − φv))

⎤
⎦ ∏

v∈V (T2
L)

1(φv∈[−π,π))

=
1

Zg0

exp

⎡
⎣−

∑
{u,v}∈E(T2

L)

Ũ(φu − φv)

⎤
⎦ ∏

v∈V (T2
L)

1(φv∈[−π,π)),

where Ũ : R → R is the 2π-periodic C2 function defined by

Ũ(α) := U(cos(α)). (28)

In particular,

Ũ(x + δ) ≤ Ũ(x) + Ũ ′(x)δ +
supy Ũ ′′(y)

2
δ2 for all x, δ ∈ R. (29)

Fix 1 ≤ � ≤ m. Define a function τ : V (T2
L) → R by

τv :=

⎧
⎪⎨
⎪⎩

1/2 ‖v‖1 ≤ 2�−1

1 − ‖v‖1
2� 2�−1 ≤ ‖v‖1 ≤ 2�

0 ‖v‖1 ≥ 2�

(30)

and define for each φ : V (T2
L) → [−π, π) its perturbations φ+, φ− : V (T2

L) →
[−π, π) by

φ+
v := φv + τv (mod 2π), φ−

v := φv − τv (mod 2π). (31)
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We shall need the following two simple properties of τ (which the reader may
easily verify):

g(φ+) = g(φ−) = g(φ) for every φ : V (T2
L) → R, (32)∑

{u,v}∈E(T2
L)

(τu − τv)2 ≤ C (33)

for some absolute constant C.
The following is the key calculation of the proof. For every φ : V (T2

L) →
[−π, π), setting g0 := g(φ),
√

tg0(φ+)tg0(φ−)

=
1

Zg0

exp
[

− 1
2

∑
{u,v}∈E(T2

L)

(Ũ(φu − φv + τu − τv) + Ũ(φu − φv − τu + τv))
]

(29)

≥ 1
Zg0

exp
[

−
∑

{u,v}∈E(T2
L)

Ũ(φu − φv) −
supy Ũ ′′(y)

2

∑
{u,v}∈E(T2

L)

(τu − τv)2
]

(33)

≥ c · tg0(φ) (34)

for an absolute constant c > 0.
We wish to convert the inequality (34) into an inequality of probabilities

rather than densities. To this end, define for a ∈ R,

Ea :=
{

φ : V (T2
n) → [−π, π) :

∣∣�ei(φ(2�,0)−φ(2�−1,0)−a)
∣∣ ≥ 9

10

}
, (35)

and, for almost every g0 with respect to the distribution of g(θ),

Ia,g0 :=
∫

Ea

√
tg0(φ+)tg0(φ−)dmg0(φ).

On the one hand, by (34),

Ia,g0 ≥ c

∫

Ea

tg0(φ)dmg0(φ) = c · P (θ ∈ Ea | g(θ) = g0) . (36)

On the other hand, the Cauchy–Schwartz inequality and a change of variables
using (31) and (32) yields

I2
a,g0

≤
∫

Ea

tg0(φ
+)dmg0(φ) ·

∫

Ea

tg0(φ
−)dmg0(φ)

= P
(
θ − τ ∈ Ea | g(θ) = g0

)
· P

(
θ + τ ∈ Ea | g(θ) = g0

)
.

(37)
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Putting together (36) and (37) and recalling (30) and (35) we obtain that, almost
surely,

P

(∣∣�ei(θ(2�,0)−θ(2�−1,0)+1/2−a)
∣∣ ≥ 9

10 | g(θ)
)

× P

(∣∣�ei(φ(2�,0)−φ(2�−1,0)−1/2−a)
∣∣ ≥ 9

10 | g(θ)
)

≥ c2 · P
(∣∣�ei(φ(2�,0)−φ(2�−1,0)−a)

∣∣ ≥ 9
10 | g(θ)

)2

.

As this inequality holds for any a ∈ R, it implies that, conditioned on g(θ),
ei(θ(2�,0)−θ(2�−1,0)) cannot be concentrated around any single value, proving the
inequality (27) that we wanted to show.

General Vertices x and y and Larger Values of n. The inequality (23)
for arbitrary vertices x and y follows easily from what we have already shown.
Indeed, by symmetry, there is no loss of generality in assuming as before that x =
(1, 0) and y �= (0, 0). Set m to be the integer satisfying that 2m ≤ ‖y‖1 < 2m+1,
so that it suffices to show that |ρx,y| ≤ Cn,U ·2−cn,U ·m. Indeed, by Proposition 1,

E(cos(θy − θx)) = �E

(
E

(
ei(θy−θ(2m,0)) | ∇θ=m

)
· E

(
ei(θ(2m,0)−θx) | ∇θ=m

))
.

Thus, the required estimate follows from (27) following the decomposition (26)
(done conditionally on ∇θ=m).

Let us briefly explain how to adapt the proof to the case that n ≥ 3. Write
(σ1, . . . , σn) for the components of σ. The idea is to condition on (σ3, . . . , σn) and
apply the previous argument to the conditional distribution of the remaining two
coordinates (σ1, σ2). In more detail, conditioned on (σ3, . . . , σn) = h, the random
variable (σ1, σ2) almost surely has a density with respect to the product over
v ∈ V (T2

L) of uniform distributions on rvS
1, where rv :=

√
1 − ‖h(v)‖2

2 ∈ [0, 1].
Moreover, after passing to the angle representation θv for each (σ1

v , σ2
v), this

density has the form

th(θ) :=
1

Zh
exp

⎡
⎣−

∑
{u,v}∈E(T2

L)

U
(
rurv cos(θu − θv) + 〈h(u), h(v)〉

)
⎤
⎦

×
∏

v∈V (T2
L)

1(θv∈[−π,π)).

In particular, we see from this expression that, conditioned on (σ3, . . . , σn),
the distribution of (σ1, σ2) is invariant to global rotations and has the domain
Markov property (just as in the n = 2 case). This allows the first step of the
proof to go through essentially without change. In the second step, the function
Ũ defined in (28) should be replaced by a collection of functions Ũ{u,v}, one for
each edge {u, v} ∈ E(T2

L), defined by Ũ{u,v}(α) := U(rurv cos(α)+〈h(u), h(v)〉).
It is straightforward to check that, since U is a C2 function and ru, rv ∈ [0, 1],
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the second derivative of Ũ{u,v} is bounded above (and below) uniformly in {u, v}
and h. The argument in the second step of the proof now goes through as well,
replacing each appearance of Ũ with the suitable Ũ{u,v}.

2.7 Long-Range Order in Dimensions d ≥ 3 - The Infra-red Bound

In this section we prove that the spin O(n) model in spatial dimensions d ≥ 3
exhibits long-range order at sufficiently low temperatures. This was first proved
by Fröhlich, Simon and Spencer [53] who introduced the method of the infra-red
bound to this end. Our exposition benefitted from the excellent ‘Marseille notes’
of Daniel Ueltschi [119, Lecture 2, part 2], the recent book of Friedli and Velenik
[50, Chapter 10] and discussions with Michael Aizenman. We prove the following
result.

Theorem 5. For any d ≥ 3 and any n ≥ 1 there exists a constant β1(d, n) such
that the following holds. Suppose σ : V (Td

L) → S
n−1 is randomly sampled from

the d-dimensional spin O(n) model at inverse temperature β ≥ β1(d, n). Then

1
|V (Td

L)|2
∑

x,y∈V (Td
L)

E(〈σx, σy〉) ≥ cd,n,β .

Moreover, for any d ≥ 1, n ≥ 1 and β > 0, we have the limiting inequality

lim inf
L→∞

1
|V (Td

L)|2
∑

x,y∈Λ

E (〈σxσy〉) ≥ 1 − n

2β

∫

[0,1]d

1∑d
j=1(1 − cos(πtj))

dt.

Lastly, the above integral is finite when d ≥ 3 and is asymptotic to 1/d as d → ∞.

Of course, long-range order for the Ising model (n = 1) has already been
established in Sect. 2.5 so that our main interest is in the case of continuous
spins, when n ≥ 2. The last part of the theorem establishes long-range order in
the spin O(n) model for β ≥ n

2d (1+ o(1)) as d → ∞. Comparing with Remark 3,
we see that this bound has the correct asymptotic dependence on both n and d.

The proof presented below, relying on the original paper of Fröhlich, Simon
and Spencer [53] and making use of reflection positivity, remains the main
method to establish Theorem 5. Fröhlich and Spencer [55] developed an alter-
native approach for the XY model (n = 2) which relies on the duality trans-
formation explained in Sect. 2.9 below; see also [10, Section 5.5]. Kennedy and
King [78] provided a second alternative approach for the XY model. However,
these alternatives do not apply to the model with larger values of n (n ≥ 3)
where the symmetry group acting on the spins is non-Abelian. For these larger
values the only alternative to reflection positivity is due to Balaban who has
made rigorous elements of the renormalization group approach to the problem
in a formidable series of papers, starting with [8]; see also Dimock’s review
starting with [35]. Nevertheless, it would be highly desirable to have additional
approaches to prove continuous-symmetry breaking as many questions in this
direction are still open, most prominently to establish a phase transition for the
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quantum Heisenberg ferromagnet in dimensions d ≥ 3 (current techniques allow
to prove this only for the antiferromagnet ; See Dyson, Lieb and Simon [46]).

In our treatment we provide additional background on reflection positivity
than strictly necessary for the proof of Theorem 5 in order to place the arguments
in a wider context and to highlight the use of reflection positivity as a general-
purpose tool applicable in many settings. The reader is referred to [119, Lecture
2, part 2] for a direct route to the proof.

Introduction to Reflection Positivity. In this section we provide an intro-
duction to reflection positivity for rather general nearest-neighbor models.
Extensions of the theory to certain next-nearest-neighbor and certain long-range
interactions are possible and the reader is referred to [19,51,52] and [50, Chapter
10] for alternative treatments.

We allow spins to take values in an arbitrary measure space (S,S, λ). We
also consider a general interaction between different values of spins, prescribed
by a symmetric measurable function h : S × S → [0,∞) which is not essentially
zero. Here symmetric means that

h(a, b) = h(b, a) for all a, b ∈ S

and not essentially zero means that
∫∫

h(a, b)dλ(a)dλ(b) > 0. For simplicity, we
assume (S,S, λ) to be a finite measure space and h to be bounded.

The spin space (S,S, λ) and the interaction h define a spin model on a finite
graph G as follows. The set of configurations is SV (G) and the density of a
configuration σ : V (G) → S with respect to dλ(σ) :=

∏
v∈V (G) dλ(σv) is

1
ZG,S,λ,h

∏
{u,v}∈E(G)

h(σu, σv), (38)

where the normalizing constant is given by

ZG,S,λ,h :=
∫ ∏

{u,v}∈E(G)

h(σu, σv)dλ(σ).

For this definition to make sense it is required that 0 < ZG,S,λ,h < ∞. The
upper bound follows from our assumptions that λ is finite and h is bounded.
For bipartite G, the case of interest to us here, the lower bound follows from the
assumption that h is not essentially zero4 (the assumption does not suffice for
general graphs).

The spin O(n) model with potential U can be recovered in this setting by
taking the spin space (S,S, λ) to be the uniform probability space on S

n−1 and
defining the interaction h by h(a, b) := exp(−U(〈a, b〉)).
4 It suffices to show that

∫∫ ∏n
i,j=1 h(si, tj)dλ(si)dλ(tj) > 0 for n ≥ 1. Fubini’s theo-

rem reduces this to
∫∫ ∏n

i=1 h(si, t)dλ(si)dλ(t) > 0, which then follows from Fubini’s
theorem and the assumption on h.
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In order to discuss reflections, the graph G should have suitable symmetries.
From here on, we consider only the torus graph G = T

d
L. Denote the vertices of

the torus by
Λ := V (Td

L) = {−L + 1, . . . , L}d.

The torus graph admits hyperplanes of reflection which pass through vertices
and hyperplanes of reflection which pass through edges. We discuss these two
cases separately.

Reflections Through Vertices. We split the vertices of the torus into two
partially overlapping subsets V0 and V1 of vertices, the ‘left’ and ‘right’ halves,
by defining

V0 :=
{
v ∈ Λ : v1 /∈ {1, . . . , L − 1}

}
and V1 :=

{
v ∈ Λ : v1 ∈ {0, 1, . . . , L}

}
,

where we write each v ∈ Λ as (v1, v2, . . . , vd). Note that V0 ∪ V1 = Λ and

V0 ∩ V1 =
{
v ∈ Λ : v1 ∈ {0, L}

}
.

Define a function R : Λ → Λ by

Rv :=

{
(−v1, v2, . . . , vn) if v1 �= L

(L, v2, . . . , vn) if v1 = L
.

Thus, R is the reflection through the vertices V0∩V1. Note in particular that R is
an involution which fixes V0 ∩V1. Geometrically, the reflection is done across the
hyperplane orthogonal to the x-axis which passes through the vertices having
x-coordinate 0 (or equivalently, the hyperplane passing through the vertices hav-
ing x-coordinate L). One may similarly consider reflections through other planes
orthogonal to one of the coordinate axes, however, for concreteness, we focus on
the reflection above. We denote by R also the naturally induced mapping on
configurations σ ∈ SΛ which is defined by (Rσ)v := σRv.

Let F denote the set of bounded measurable functions f : SΛ → C. Let
F0 ⊂ F be the subset of functions f which depend only on the values of the
spins in V0, i.e., f(σ) is determined by σ|V0 . We define a bilinear form on F0 by

(f, g) := E

(
f(σ)g(Rσ)

)
for f, g ∈ F0.

Proposition 2 (Reflection positivity through vertices). The bilinear form
defined above is positive semidefinite, i.e.,

(f, f) ≥ 0 for all f ∈ F0. (39)

Proof. The domain Markov property implies that after conditioning on σ|V0∩V1

the random variables σ|V0 and (Rσ)|V0 become independent and identically dis-
tributed. Thus,

(f, f) = E

(
f(σ)f(Rσ)

)
= E

(
E

(
f(σ)f(Rσ) | σ|V0∩V1

))

= E

(
E (f(σ) | σ|V0∩V1) · E (f(Rσ) | σ|V0∩V1)

)

= E

(
|E (f(σ) | σ|V0∩V1)|

2
)

≥ 0.
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The reflection positivity property (39) (used for all hyperplanes of reflec-
tion passing through vertices) implies a version of the important “chessboard
estimate”. We do not state this estimate here, as a version of it for reflections
through edges is given in Proposition 4 below, and refer instead to [19] and [50,
Chapter 10] for more details.

Reflections Through Edges. We split the vertices of the torus into two non-
overlapping subsets V0 and V1 of vertices, the ‘left’ and ‘right’ halves, by

V0 :=
{
v ∈ Λ : v1 ≤ 0

}
and V1 :=

{
v ∈ Λ : v1 ≥ 1

}
.

Note that V0 ∪ V1 = Λ and that V0 ∩ V1 = ∅. Define a function R : Λ → Λ by

Rv := (1 − v1, v2, . . . , vn).

Thus, R is the reflection through the edges between V0 and V1. Note in particular
that R is an involution with no fixed points. Geometrically, the reflection is
done across the hyperplane orthogonal to the x-axis which passes through the
edges between x-coordinate 0 and x-coordinate 1 (or equivalently, the hyperplane
passing through the edges between x-coordinate L and x-coordinate −L + 1).
One may similarly consider reflections through other planes orthogonal to one of
the coordinate axes, however, for concreteness, we focus on the reflection above.
We again denote by R also the naturally induced mapping on configurations
σ ∈ SΛ which is defined by (Rσ)v := σRv.

Let F denote the set of bounded measurable functions f : SΛ → C. Let
F0 ⊂ F be the subset of functions f which depend only on the values of the
spins in V0, i.e., f(σ) is determined by σ|V0 . We define a bilinear form on F0 by

(f, g) := E

(
f(σ)g(Rσ)

)
for f, g ∈ F0. (40)

Proposition 3 (Reflection positivity through edges). Suppose that the
interaction h may be written as follows: there exists a measure space (T, T , ν),
where ν is a finite (non-negative) measure, and a bounded measurable function
α : T × S → C such that

h(a, b) =
∫

α(t, a)α(t, b)dν(t) for (λ × λ)-almost every a, b ∈ S. (41)

Then the bilinear form defined above is positive semidefinite, i.e., (f, f) ≥ 0 for
all f ∈ F0.

We remark that for finite spin spaces S the assumption in the proposition
holds if and only if the interaction h, regarded as a real symmetric S ×S matrix,
is positive semidefinite. Indeed, if h has eigenvalues (λt) and associated (real)
eigenvectors (αt) then h(a, b) =

∑
t αt(a)αt(b)λt so that being positive semidef-

inite yields a representation of the form (41). Conversely, having such a repre-
sentation implies that

∑
a,b∈S v(a)h(a, b)v(b) ≥ 0 for all v : S → R whence h
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is positive semidefinite. This argument may be viewed as saying that, for finite
spin spaces, having a representation of the form (41) is a necessary condition
for the conclusion that (·, ·) is positive semidefinite when the graph G is the
single-edge graph T

1
1. Further details on necessary and sufficient conditions for

reflection positivity may be found in [19,51,52] and [50, Chapter 10].

Proof of Proposition 3. By the definition (38) of the density of σ, we have

E

(
f(σ)f(Rσ)

)
=

∫
f(σ)f(Rσ)h0(σ)h0(Rσ)

∏
{u,v}∈E(V0,V1)

h(σu, σv)dλ(σ),

where h0 ∈ F0 accounts for the part of the interaction coming from edges within
V0, and E(V0, V1) denotes the set of edges between V0 and V1. Using the assump-
tion (41) and writing αt := α(t, ·), we see that the above is equal to

∫∫
f(σ)f(Rσ)h0(σ)h0(Rσ)

×
∏

{u,v}∈E(V0,V1)

αt{u,v}(σu)αt{u,v}(σv)dν(t{u,v})dλ(σ)

=
∫ ∏

{u,v}∈E(V0,V1)

dν(t{u,v})
∫

f(σ)h0(σ)

×
∏

{u,v}∈E(V0,V1)
u∈V0

αt{u,v}(σu)
∏

u∈V0

dλ(σu)

×
∫

f(Rσ)h0(Rσ)
∏

{u,v}∈E(V0,V1)
v∈V1

αt{u,v}(σv)
∏

v∈V1

dλ(σv)

=
∫ ∏

{u,v}∈E(V0,V1)

dν(t{u,v})

×
∣∣∣∣
∫

f(σ)h0(σ)
∏

{u,v}∈E(V0,V1)
u∈V0

αt{u,v}(σu)
∏

u∈V0

dλ(σu)
∣∣∣∣
2

≥ 0,

where in the second equality we used the fact that Rv = u when {u, v} ∈
E(V0, V1) to write
∫

f(Rσ)h0(Rσ)
∏

{u,v}∈E(V0,V1)
v∈V1

αt{u,v}(σv)
∏

v∈V1

dλ(σv)

=
∫

f(σ)h0(σ)
∏

{u,v}∈E(V0,V1)
u∈V0

αt{u,v}(σu)
∏

u∈V0

dλ(σu)

and in the last inequality we used that ν is a non-negative measure. ��
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Let us consider an important example of a representation of the form (41).

Example. Let S = R
n. Let h̃ : Rn → [0,∞) be a continuous positive-definite

function (in particular, h̃(−x) = h̃(x)). This is equivalent, by Bochner’s theorem,
to h̃ being the Fourier transform of a finite (non-negative) measure ν on R

n.
Suppose that h : Rn ×R

n → [0,∞) is given by h(a, b) := h̃(a − b). Then we may
write

h(a, b) = h̃(a − b) =
∫

eitaeitbdν(t), a, b ∈ R
n,

yielding a representation of the form (41). We remark that the example gener-
alizes to the case that S is a locally compact Abelian group.

A particular function h̃ which we will be interested in later on is the one
arising from the Gaussian interaction, namely, h̃(x) := e− β

2 ‖x‖2
2 . In this case, the

Fourier transform of h̃ is itself a scaled Gaussian density which is, in particular,
non-negative. Thus h(a, b) := h̃(a − b) admits a representation of the form (41).

The reflection positivity property allows to prove the following “chessboard
estimate”.

Proposition 4 (Chessboard estimate). Let σ be sampled from the den-
sity (38) and suppose that the bilinear form defined in (40) is positive semidefi-
nite. Then for any collection of real-valued bounded measurable functions (fv)v∈Λ

on (S,S), we have

∣∣∣∣∣E
(∏

v∈Λ

fv(σv)

)∣∣∣∣∣
|Λ|

≤
∏
w∈Λ

E

(∏
v∈Λ

fw(σv)

)
.

More general versions of the chessboard estimate are available and we refer
the reader once again to [19] and [50, Chapter 10] for more details.

Proof of Proposition 4. Let (fv)v∈Λ be real-valued bounded measurable functions
on (S,S). We first prove the following weaker inequality:

∣∣∣∣∣E
(∏

v∈Λ

fv(σv)

)∣∣∣∣∣ ≤ max
w∈Λ

E

(∏
v∈Λ

fw(σv)

)
. (42)

For every τ : Λ → Λ, denote

P (τ) := E

(∏
v∈Λ

fτ(v)(σv)

)
and M(τ) :=

∣∣{{u, v} ∈ E(Td
L) : τ(u) �= τ(v)

}∣∣ .

Note that
∏

v∈Λ fv(σv) changes sign under the substitution fv �→ −fv for any
single v, while

∏
v∈Λ fw(σv) remains unchanged (since |Λ| is even). Thus, (42)

amounts to showing that some minimizer of M is a maximizer of P , i.e., that
there exists τ∗ such that M(τ∗) = 0 and P (τ) ≤ P (τ∗) for all τ . Let τ∗ be
a maximizer of P having M(τ∗) as small as possible among such maximizers.
Assume towards a contradiction that M(τ∗) ≥ 1. Then there exist u,w ∈ Λ
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such that τ(u) �= τ(w) and {u,w} ∈ E(Td
L). Since rotations and translations

of Td
L preserve the distribution of σ we may assume without loss of generality

that u ∈ V0 and w ∈ V1. Define two functions F 0
τ (σ) :=

∏
v∈V0

fτ(v)(σv) and
F 1

τ (σ) :=
∏

v∈V1
fτ(v)(σRv), and observe that both functions belong to F0. Thus,

P (τ) = E

(
F 0

τ (σ) · F 1
τ (Rσ)

)
= (F 0

τ , F 1
τ ).

Since the above bilinear form is positive semidefinite by assumption, the Cauchy–
Schwartz inequality and the fact that τ∗ is a maximizer of P imply that

P (τ∗) ≤
√

(F 0
τ∗ , F 0

τ∗) · (F 1
τ∗ , F 1

τ∗) =
√

P (τ0) · P (τ1) ≤ P (τ∗),

where τ0 and τ1 are defined by τi|Vi
= τ∗|Vi

and τi = τi ◦ R. Thus, both τ0

and τ1 are maximizers of P . Since τ0(u′) = τ0(w′) and τ1(u′) = τ1(w′) for
{u′, w′} ∈ E(Td

L), u′ ∈ V0 and w′ ∈ V1, we see that M(τ0) + M(τ1) < 2M(τ∗),
which is a contradiction to the choice of τ∗.

We now show how to obtain the proposition from (42). For w ∈ Λ, define

aw := E

(∏
v∈Λ

fw(σv)

)
,

and note that (42) implies that aw ≥ 0 (as can be seen by taking all functions
to be equal). Let ε > 0 and define functions (gv)v∈Λ on (S,S) by

gv(s) :=
fv(s)

(av + ε)1/|Λ| .

As these functions are bounded and measurable, (42) implies that
∣∣∣∣∣E

(∏
v∈Λ

fv(σv)

)∣∣∣∣∣ ≤
∏
v∈Λ

(av + ε)1/|Λ| · max
w∈Λ

aw

aw + ε
≤

∏
v∈Λ

(av + ε)1/|Λ|.

Letting ε tend to zero now yields the proposition.
In the special case when each fv is taken to be the indicator of some Ev ∈ S,

the chessboard estimate implies that the probability that “Ev occurs at v for all
v” is maximized when all the sets {Ev}v are equal. For convenience, and as this
is the only use we make of the chessboard estimate in the next section, we state
this explicitly as a corollary.

Corollary 1. Let σ be sampled from the density (38) and suppose that the bilin-
ear form defined in (40) is positive semidefinite. Then for any collection of mea-
surable sets (Ev)v∈Λ in (S,S), we have

P

(
σv ∈ Ev for all v ∈ Λ

)
≤ max

w∈Λ
P

(
σv ∈ Ew for all v ∈ Λ

)
.
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Gaussian Domination. Recall that Λ denotes the set of vertices of Td
L. For

τ : Λ → R
n, denote

W (τ) := exp

⎡
⎣−β

2

∑

{u,v}∈E(Td
L)

‖τu − τv‖2
2

⎤
⎦ , (43)

where ‖·‖2 denotes the Euclidean norm of a vector. Recall that Ω =
(
S

n−1
)Λ

denotes the space of configurations of the spin O(n) model on T
d
L, and note that

since ‖σv‖2
2 = 1 at each vertex v for σ ∈ Ω, the function W is closely related to

the density of the spin O(n) model (see (1)), namely,

exp

⎡
⎣β

∑
{u,v}∈E(G)

〈σu, σv〉

⎤
⎦ = e−βd|Λ| · W (σ) for all σ ∈ Ω. (44)

A key part of the argument is the study of the function Z : (Rn)Λ → R defined by

Z(τ) :=
∫

Ω

W (σ + τ)dσ.

Using (44), we see that the function Z(τ) at the zero function τ = 0 is closely
related to the partition function of the spin O(n) model (see (2)), namely,

Z(0) = eβd|Λ| · Zspin

T
d
L,n,β

. (45)

The main step in the proof of Theorem 5 is the verification of the following
Gaussian domination inequality,

Z(τ) ≤ Z(0) for all τ : Λ → R
n, (46)

which may be reinterpreted as an inequality of expectations in the spin O(n)
model. Indeed, if σ is sampled from the spin O(n) model on T

d
L at inverse

temperature β, then, by (44), (45) and (46),

E

(
W (σ + τ)

W (σ)

)
=

Z(τ)
Z(0)

≤ 1. (47)

We establish (46) using the method of reflection positivity as described in
the previous section, or, more precisely, using the chessboard estimate given in
Proposition 4 and Corollary 1. To this end we first define a suitable spin system
specified by a finite measure space (S,S, λ) and bounded symmetric interaction
h : S × S → [0,∞) to which we can apply the results of the previous section.

Consider the spin system on T
d
L whose configurations are pairs σ̄ = (σ, τ),

where for each v ∈ Λ, the spins σv and τv take values in R
n. Let η0 be the

Lebesgue measure on a bounded open set in R
n containing the origin. Denote

S := R
n × R

n (with Borel σ-algebra) and let λ be the product of the uniform
probability measure on S

n−1 and η0. Let the interaction h : S × S → [0,∞) be
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h((a, a′), (b, b′)) := h̃(a + a′ − b − b′), where h̃(x) := e− β
2 ‖x‖2

2 . Suppose σ̄ = (σ, τ)
is sampled according to the density (38) with respect to dλ(σ̄), and observe that
this density is exactly given by W (σ + τ)/Z

T
d
L,S,λ,h. In particular, the marginal

distribution of τ has density Z(τ)/Z
T

d
L,S,λ,h with respect to η :=

∏
v∈V (Td

L) η0.
For a function t : Λ → R

n and ε > 0, define the event

Et,ε := {|τv − tv| < ε for all v ∈ Λ} .

It follows that, for η-almost every t, we have

Z(t)
Z
T

d
L,S,λ,h

= lim
ε↓0

P(Et,ε)
η(Et,ε)

= lim
ε↓0

(Cnεn)−|Λ| · P(Et,ε), (48)

where Cn is a positive constant depending only on n and the second equality
uses that η0 is supported on an open set.

Proposition 3 and the example following its proof imply that the bilinear
form defined by (40), with σ̄ substituted for σ, is positive semidefinite. Thus
Corollary 1 may be used for the distribution of σ̄. It implies that for each t : Λ →
R

n, P(Et,ε) ≤ P(Ec(t),ε), where c(t) : Λ → R
n is a constant function. Combining

this with (48) and using that Z(0) = Z(c) for any constant c, we obtain Z(t) ≤
Z(0) for η-almost every t. The Gaussian domination inequality (46) now follows
from the continuity of Z and the fact that η0 had an arbitrarily large support.

Where the Name “Gaussian domination” Comes From. Let us give a
short explanation as to the why (46) is referred to as Gaussian domination.
In the previous section, we considered a general spin model with density (38)
with respect to the product of some a priori finite measure space. In fact, even
when the a priori measure is not finite, in certain cases one can still make sense
of the same density. For instance, if this a priori measure space is the Lebesgue
measure on R

n and the interaction h is of the same form as considered above, i.e.,
h(a, b) := e− β

2 ‖a−b‖2
2 , then the distribution of σ is well-defined when considered

up to a global addition of a constant (i.e., σ takes values in the quotient space
(Rn)Λ/Rn in which two configurations are equivalent if they differ by a constant;
alternatively, one could introduce a boundary condition by normalizing σ to be
0 at some vertex). This model is called the discrete Gaussian free field (see
also Sect. 2.8 below). Since the Lebesgue measure is invariant to translations, it
follows that the function Z corresponding to this model satisfies Z(τ) = Z(0)
for all τ . For this reason, (46) may be viewed as a comparison to the Gaussian
case. Indeed, (46) implies that certain quantities in the spin O(n) model are
dominated by the corresponding quantities in the discrete Gaussian free field.
For instance, the infra-red bound given by (52) below becomes equality in the
Gaussian case.

The Infra-red Bound. In this section, we prove an upper bound on the Fourier
transform of the correlation function.
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Recall that Λ = {−L + 1, . . . , L}d is the set of vertices of Td
L. We begin by

introducing the discrete Laplacian operator Δ on C
Λ defined by

(Δf)u :=
∑

v : {u,v}∈E(Td
L)

(fv − fu), for f ∈ C
Λ.

Thus, one may regard Δ as a Λ × Λ matrix given by

Δxy :=

⎧
⎪⎨
⎪⎩

−2d if x = y

1 if {x, y} ∈ E(Td
L)

0 otherwise
.

Denote the inner-product on C
Λ by (·, ·), i.e.,

(f, g) :=
∑
u∈Λ

fugu, for f, g ∈ C
Λ.

Recall now the discrete Green identity :
∑

{u,v}∈E(Td
L)

(fu − fv)(gu − gv) = (f,−Δg), for f, g ∈ C
Λ.

With a slight abuse of notation, we also write Δ and (·, ·) for the Lapla-
cian and inner-product on (Cn)Λ, so that Δf = (Δf1, . . . ,Δfn) and (f, g) =∑n

j=1(f
j , gj) for f, g ∈ (Cn)Λ. Using this notation, we can rewrite (43) as

W (τ) = exp
[
1
2β(τ,−Δτ)

]
, for τ ∈ (Rn)Λ.

Thus, if σ is sampled from the d-dimensional spin O(n) model on T
d
L at inverse

temperature β, then the Gaussian domination inequality (47) becomes

E

(
exp

[
−β

2

(
(σ + τ,−Δσ − Δτ) − (σ,−Δσ)

)])
≤ 1, for τ ∈ (Rn)Λ,

or, equivalently, using that σ and τ are real-valued and that Δ is symmetric,

E

(
exp

[
β(σ,Δτ)

])
≤ exp

[
− 1

2β(τ,Δτ)
]
, for τ ∈ (Rn)Λ. (49)

Substituting ατ in (49) for α > 0, and expanding both sides of the inequality
using the Taylor’s series for et, yields

1 + αβ ·E ((σ,Δτ)) + 1
2α2β2 ·E

(
(σ,Δτ)2

)
+ O(α3) ≤ 1 − 1

2α2β(τ,Δτ) + O(α4).

Letting α tend to zero, and using that E((σ,Δτ)) = 0 by the invariance of the
measure to the transformation σ �→ −σ, we obtain

E
(
(σ,Δτ)2

)
≤ (τ,−Δτ)

β
, for τ ∈ (Rn)Λ. (50)
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At this point, it seems reasonable that diagonalizing the Laplacian may prove
useful, and indeed we proceed to do so. As the Laplacian matrix Δ is cyclic, it
is diagonalized in the Fourier basis, which we now define. Let Λ∗ := π

LΛ denote
the vertices of the dual torus. The Fourier basis elements are {F k}k∈Λ∗ , where

F k
v := ei〈k,v〉, k ∈ Λ∗, v ∈ Λ,

and where we use the notation 〈·, ·〉 also for the inner-product on R
d. A straight-

forward computation now yields that each F k is an eigenvector of (−Δ) with
eigenvalue λk given by

λk := 2
d∑

j=1

(1 − cos(kj)). (51)

It is also straightforward to check that (F k, F k) = |Λ| and that (F k, F k′
) = 0

for k �= k′, so that the Fourier basis is an orthogonal basis. Thus, we may write
any f ∈ C

Λ in this basis as

fv =
1

|Λ|
∑

k∈Λ∗
f̂kei〈k,v〉, v ∈ Λ,

where {f̂k}k∈Λ∗ are the Fourier coefficients of f given by

f̂k := (f, F k) =
∑
v∈Λ

fve−i〈k,v〉, k ∈ Λ∗.

Returning to the inequality (50), we now substitute a particular choice for τ .
Let k ∈ Λ∗ and let j ∈ {1, . . . , n}. Define τ := ejF

k, i.e., τu = ei〈k,u〉 · ej for all
u ∈ Λ, where ej is the j-th standard basis vector in R

n. Then, since Δτ = −λkτ ,
(τ, τ) = |Λ| and (σ, τ) = σ̂j

k, applying (50) to both the real and imaginary parts
of τ , we obtain

E
(
|(σ,Δτ)|2

)
= λ2

k · E
(
|σ̂j

k|2
)

≤ (τ,−Δτ)
β

=
λk|Λ|

β
.

Hence,

E

(
|σ̂j

k|2
)

≤ |Λ|
βλk

, for any k ∈ Λ∗ \ {0}, 1 ≤ j ≤ n. (52)

This inequality is called the infra-red bound.
The inequality (52) can be expressed as an upper bound on the Fourier

transform of the two-point correlation function ρx−y := E(〈σx, σy〉). Indeed, for
any k ∈ Λ∗,

ρ̂k =
∑
v∈Λ

ρve−i〈k,v〉 =
1

|Λ|
∑

x,y∈Λ

E(〈σx, σy〉)e−i〈k,(x−y)〉

=
n∑

j=1

E

∣∣∣
∑
x∈Λ

σj
xe−i〈k,x〉

∣∣∣
2

=
n∑

j=1

E

(
|σ̂j

k|2
)

.

As we will see in the next section, it implies that at low temperature, the Fourier
transform of the two-point function in the infinite-volume limit must have a non-
trivial atom at k = 0, implying long-range order.
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Long-Range Order. By Parseval’s identity,

‖f‖2
2 = (f, f) =

1
|Λ|

∑
k∈Λ∗

|f̂k|2, for f ∈ C
Λ.

Thus,

1 =
1

|Λ|
∑
v∈Λ

‖σv‖2
2 =

1
|Λ|

n∑
j=1

‖σj‖2
2 =

1
|Λ|2

n∑
j=1

∑
k∈Λ∗

(σ̂j
k)2, for σ ∈

(
S

n−1
)Λ

.

Therefore, the infra-red bound (52) implies that

1
|Λ|2

n∑
j=1

E

(
(σ̂j

0)
2
)

≥ 1 − 1
|Λ|

∑
k∈Λ∗\{0}

n

βλk
. (53)

Note that the left-hand side of (53) is precisely the quantity we want to estimate,
i.e., the quantity appearing in the statement of Theorem5, as can be seen from

n∑
j=1

E

(
(σ̂j

0)
2
)

=
n∑

j=1

E

⎛
⎝
(∑

v∈Λ

σj
v

)2
⎞
⎠ =

n∑
j=1

∑
x,y∈Λ

E
(
σj

xσj
y

)
=

∑
x,y∈Λ

E (〈σxσy〉) .

Plugging in the value of λk from (51) into the right-hand side of (53), we identify
a Riemann sum, and thus obtain

lim inf
L→∞

1
|Λ|2

∑
x,y∈Λ

E (〈σxσy〉) ≥ 1 − n

2β(2π)d

∫

[−π,π]d

1∑d
j=1(1 − cos(tj))

dt

= 1 − n

2β

∫

[0,1]d

1∑d
j=1(1 − cos(πtj))

dt.

This completes the proof of the moreover part of Theorem 5. To deduce the first
part of the theorem, note that the integral is finite in dimensions d ≥ 3, since
1 − cos(t) is of order t2 when |t| is small. Thus, in dimensions d ≥ 3, when β
is sufficiently large, the quantity of interest, |Λ|−2

∑
x,y∈Λ(〈σxσy〉), is bounded

from below uniformly in L (for bounded values of L, we appeal directly to (53)
without taking a limit). Finally, we note that the latter integral is asymptotic
to 1/d as d → ∞, as one can deduce using the law of large numbers.

As a final remark we note that the proof of Theorem5 adapts verbatim to
other a priori single-site measures (other than the uniform measure on S

n−1),
with the only change being the bound on

∑
j E((σ̂j

0)
2) in (53), due to the fact that

we can no longer use Parseval’s identity to obtain a simple deterministic bound
on the sum of squares of the Fourier coefficients of σ. See, e.g., [10, Section 3.2]
for details.
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2.8 Slow Decay of Correlations in Spin O(2) Models - Heuristic for
the Berezinskii–Kosterlitz–Thouless Transition and a Theorem
of Aizenman

In this section we consider the question of proving a power-law lower bound on
the decay of correlations in the two-dimensional spin O(2) model. As described
in Sect. 2.2, this was achieved for the XY model at sufficiently low temperatures
in the celebrated work of Fröhlich and Spencer on the Berezinskii–Kosterlitz–
Thouless transition [54]. The proof is too difficult to present within the scope of
our notes (see [79] for a recent presentation) and instead we start by giving a
heuristic reason for the existence of the transition. The heuristic suggests that a
power-law lower bound on correlations will always hold in the spin O(2) model
with a potential U of bounded support (as explained below). We then proceed by
presenting a theorem of Aizenman [3], following earlier predictions by Patrascioiu
and Seiler [96], who made rigorous a version of the last statement.

Heuristic for the Berezinskii–Kosterlitz–Thouless Transition and Vor-
tices in the XY Model. To motivate the result, let us first give a heuris-
tic argument for the Berezinskii–Kosterlitz–Thouless phase transition. Let h :
V (T2

L) → R be a randomly sampled discrete Gaussian free field. By this, we
mean that h((0, 0)) := 0 and h is sampled from the probability measure

1
ZDGFF
T
2
L,β

exp

⎡
⎣−β

∑
{u,v}∈E(G)

(hu − hv)2

⎤
⎦ ∏

v∈V (T2
L)

v �=(0,0)

dm(hv), (54)

with ZDGFF
T
2
L,β

a suitable normalization constant and dm standing for the Lebesgue
measure on R. As the expression in the exponential is a quadratic form in h,
it follows that h has a multi-dimensional Gaussian distribution with zero mean.
Moreover, the matrix of this quadratic form is proportional to the graph Lapla-
cian of T2

L, whence the covariance structure of h is proportional to the Green’s
function of T2

L. In particular,

Var(hx) = Var(hx − h0) ≈ a

β
log ‖x − y‖1 (55)

for large ‖x − y‖1, with a specific constant a > 0. Now consider the random
configuration σ : V (T2

L) → S
1, with S

1 identified with the unit circle in the
complex plane, obtained by setting

σv := exp(ihv). (56)

This configuration has some features in common with a sample of the XY model
(normalized to have σ(0,0) = 1). Although its density is not a product of nearest-
neighbor terms, one may imagine that the main contribution to it does come from
nearest-neighbor interactions, at least for large β when the differences hu −hv of
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nearest neighbors tend to be small. The interaction term −β(hu − hv)2 in (54)
is then rather akin to an interaction term of the form β

2 〈σu, σv〉 as in the XY
model (as 〈s, t〉 is the cosine of the difference of arguments between s and t and
one may consider its Taylor expansion around s = t). The main advantage in
this definition of σ is that it allows a precise calculation of correlation. Indeed,
as hx has a centered Gaussian distribution with variance given by (55), it follows
that

ρx,(0,0) := E(
〈
σx, σ(0,0)

〉
) = E(cos(hx)) = e−Var(hx)

2 ≈ ‖x − y‖− a
β

1 , (57)

and thus σ exhibits power-law decay of correlations.
There are many reasons why the analogy between the definition (56) and

samples of the XY model should not hold. Of these, the notion of vortices has
been highlighted in the literature. Suppose now that σ : V (T2

L) → S
1 is an

arbitrary configuration. Associate to each directed edge (u, v), where {u, v} ∈
E(T2

L), the difference θ(u,v) in the arguments of σu and σv, with the convention
that θ(u,v) ∈ [−π, π). Call a 2× 2 ‘square’ in the graph T

2
L a plaquette (these are

exactly the simple cycles of length 4 in T
2
L). For a plaquette P , set sP to be the

sum of θ(u,v) on the edges around the plaquette going in ‘clockwise’ order, say.
We necessarily have that sP ∈ {−2π, 0, 2π} and one says that there is a vortex
at P if sP �= 0, with charge plus or minus according to the sign of sP . Vortices
form an obstruction to defining a height function h for which (56) holds, as one
would naturally like the differences of this h to be the θ(u,v), but then one must
have sP = 0 for all plaquettes. Existence of vortices means that h needs to be
a multi-valued function, with a non-trivial monodromy around plaquettes with
sP �= 0.

Now take σ to be a sample of the XY model on T
2
L at inverse temperature

β. When β is small, the model is disordered as one may deduce from the high-
temperature expansion (Sect. 2.4) and there are vortices of both charges in a
somewhat chaotic fashion (a ‘plasma’ of vortices), making the analogy with the
definition (56) rather weak. Indeed, in this case there is exponential decay of
correlations violating (57). However, when β is large, it can be shown (e.g., by a
version of the chessboard estimate, see Sect. 2.7) that large differences θ(u,v) in
the angles are rare, whence vortices are rare too. Thus, one may hope vortices to
bind together, coming in structures of small diameter of overall neutral charge
(the smallest structure is a dipole, having one plus and one minus vortex). When
this occurs, the height function h can be defined as a single-valued function at
most vertices and one may hope that the analogy (56) is of relevance so that, in
particular, power-law decay of correlations holds. This gives a heuristic reason
for the Berezinskii–Kosterlitz–Thouless transition.

Slow Decay of Correlations for Lipschitz Spin O(2) Models. The above
heuristic suggests the consideration of the spin O(2) model with a potential U of
bounded support. By this we mean a measurable U : [−1, 1] → (−∞,∞] (allowing
here U(r) = ∞) which satisfies

U(r) = ∞ when r < r0 ∈ (−1, 1).
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This property constrains the corresponding O(2) model so that adjacent spins
have difference of arguments at most arccos(r0). Such a spin configuration may
naturally be called Lipschitz (as in a Lipschitz function). If r0 ≥ 0, the maximal
difference allowed is at most π

2 which implies that the spin configuration is free
of vortices with probability one. If indeed vortices are the reason behind the
Berezinskii–Kosterlitz–Thouless transition, then one may expect such models
to always exhibit power-law decay of correlations. Patrascioiu and Seiler [96]
predicted, based on rigorous mathematical statements and certain yet unproven
conjectures, that a phenomenon of this kind should hold. Aizenman [3] then gave
a beautiful proof of a version of the above statement, which we now proceed to
present.

Theorem 6. Let U : [−1, 1] → (−∞,∞] be non-increasing and satisfy

U(r) = ∞ when r <
1√
2
. (58)

Suppose that σ : V (T2
L) → S

1 is randomly sampled from the two-dimensional
spin O(2) model with potential U . Then, for any integer 1 ≤ � ≤ L,

max
x,y∈V (T2

L)
‖x−y‖1≥�

ρx,y = max
x,y∈V (T2

L)
‖x−y‖1≥�

E(〈σx, σy〉) ≥ 1
2�2

. (59)

We make a few remarks regarding the statement. First, one would expect that
ρx,y is at least a power of ‖x − y‖1 for all x, y ∈ V (T2

L). The bound (59) is a
little weaker in that it only shows existence of a pair x, y with this property (the
proof actually gives a slightly stronger statement, see (63) below), but is still
enough to rule out exponential decay of correlations in the sense we saw occurs
at high temperatures (see Sect. 2.4). Second, the bound (59) can be said to hold
at all temperatures in that it will continue to hold if we multiply the potential
U by any constant. Third, the constraint (58) is stronger than the constraint
discussed above which would prohibit vortices (U(r) = ∞ if r < 0). This stronger
assumption is used in the proof and it remains open to understand the behavior
with other versions of the constraint. Lastly, the fact that correlations decay at
least as fast as a power-law under the assumptions of the theorem is a special
case of the results of [56].

We proceed to the proof of Theorem 6. Let U be a potential as in the theorem
and σ : V (T2

L) → S
1 be randomly sampled from the two-dimensional spin O(2)

model with potential U .

Step 1: Passing to {−1, 1}-Valued Random Variables. A main idea in
the proof, suggested in the work of Patrascioiu and Seiler [96], is to consider
the configuration σ conditioned on the y coordinate of each spin and identify an
Ising-type model which is embedded in the configuration. In fact, we have already
used this same idea in Sect. 2.3 when proving the non-negativity of correlations
for the spin O(n) model with n ≥ 2. Recall the definitions of the signs ε =
(εv)v∈V (T2

L) and the coordinate spin values (σ1, σ2) = (σ1
v , σ2

v)v∈V (T2
L) given just
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prior to Theorem 2. Recall also that |σ1| is determined by σ2 and that σ is
determined by (ε, σ2). By Theorem 2, we have

E(εxεy | σ2) ≥ 0 for every x, y ∈ V (T2
L), almost surely. (60)

Moreover, as in the proof of Theorem2, we have

ρx,y = 2E(|σ1
x| · |σ1

y| · E(εxεy | σ2)), (61)

Step 2: A Lower Bound on Correlations in Terms of Connectivity. A
key idea in the analysis of Aizenman [3] is the consideration of the following
random set of vertices

V0 :=
{

v ∈ V (T2
L) : |σ1

v | ≥ 1√
2

}
.

Note that this set is measurable with respect to σ2. Let us consider the relevance
of this set to the conditional correlations E(εxεy | σ2) discussed above.

For reasons that will become clear in the next step, we introduce a second
adjacency relation on the vertices V (T2

L). We say that u, v ∈ V (T2
L) are �-

adjacent if {u, v} ∈ E(T2
L) or u, v are next-nearest-neighbors in T

2
L which differ

in both coordinates (they are diagonal neighbors). Now observe that, almost
surely,

if u, v are �-adjacent and both u, v ∈ V0 then εu = εv.

This is a consequence of the bounded support constraint (58) and it is here
that the number 1√

2
in that constraint is important (as we are allowing next-

nearest-neighbors). Together with the non-negativity property (60), it follows
that

E(εxεy | σ2) ≥ 1(Ex,y) for every x, y ∈ V (T2
L), almost surely,

where we write 1(Ex,y) for the indicator function of the event

Ex,y := {x and y are connected in the graph on V0 ⊆ V (T2
L)

with the �-adjacency}.

Plugging this relation back into the identity (61) for the correlation ρx,y shows
that

ρx,y ≥ 2E(|σ1
x| · |σ1

y| · 1(Ex,y)) ≥ P(Ex,y), (62)

where we used that |σ1
x| · |σ1

y| ≥ 1
2 when x, y ∈ V0. We now proceed to deduce

Theorem 6 from this lower bound.

Step 3: Duality for Vertex Crossings. Fix an integer 1 ≤ � ≤ L and define
the discrete square R := {1, . . . , �}2 ⊆ V (T2

L).
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Geometric Fact: For any subset R0 ⊆ R, either there is a top-bottom crossing
of R with vertices of R0 and the �-adjacency or there is a left-right crossing
of R with vertices of R \ R0 and the standard nearest-neighbor adjacency (that
of T2

L).
The fact is intuitive, though finding a simple proof requires some ingenuity.

We refer the reader to Timár [118] for this and related statements.
Now consider the two events

E := {there is a top-bottom crossing of R

with vertices of V0 and the �-adjacency},

F := {there is a left-right crossing of R

with vertices of V (T2
L) \ V0 and the standard adjacency}.

By rotational-symmetry of the configuration σ (its distribution is invariant under
applying a global rotation of the spins), we have P(F ) = P(F̃ ), where

F̃ := {there is a left-right crossing of R

with vertices of V0 and the standard adjacency}.

In particular, as R is a square and since it easier to be connected in the
�-adjacency than in the nearest-neighbor adjacency, we conclude that

P(E) ≥ P(F ).

Lastly, the geometric fact implies that P(E ∪ F ) = 1, whence

1 = P(E ∪ F ) ≤ P(E) + P(F ) ≤ 2P(E) ≤ 2
∑

x=(a,1), 1≤a≤�
y=(b,�), 1≤b≤�

P(Ex,y)

(62)

≤ 2
∑

x=(a,1), 1≤a≤�
y=(b,�), 1≤b≤�

ρx,y, (63)

from which Theorem 6 follows.

2.9 Exact Representations

In this section, we show that the XY model in two dimensions admits an exact
representation as an integer-valued height function. Such representations are
sometimes called dual models. We mention as another example that the dual
model of the Villain model is the integer-valued (discrete) Gaussian free field.
The reader may also consult [54, Appendix A] or [79, Section 6.1] for additional
details. We mention also in this regard that the loop O(n) model, discussed in
Sect. 3 below, may be regarded as an approximate (graphical) representation for
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the spin O(n) model (an exact representation for n = 1); See Sect. 3.2 for details.
Another exact representation for the spin O(n) model, which is not discussed
here, is the Brydges–Fröhlich–Spencer random walk representation, inspired by
pioneering work of Symanzik [115]; see [23,48] for details.

We begin the treatment here in the general context of the spin O(n) model
with n = 2 and potential U on an arbitrary finite graph G as defined in (3). As
the spins take values in the unit circle, we may reparameterize the spin variables
according to their angle, to obtain

Zspin
G,n,U =

∫

Ω

∏
{u,v}∈E(G)

exp
[

− U(〈σu, σv〉)
]
dσ =

∫

Ω′

∏
{u,v}∈E(G)

g(θu − θv)dθ,

(64)
where dθ is the Lebesgue measure on Ω′ := [0, 1)V (G) and g : R → R is the
1-periodic function defined by g(t) := exp[−U(cos(2πt))]. When the potential U
is sufficiently nice, g has a Fourier expansion:

g(t) =
∞∑

k=−∞
ĝ(k)e2πikt, where ĝ(k) :=

∫ 1

0

g(t)e−2πiktdt.

Note that, since g is real and even, we have that ĝ is real and symmetric. Having
in mind that we want to plug the Fourier series of g into (64), we note that θu−θv

is defined for {u, v} ∈ E(G) up to its sign. For this reason, it is convenient to
work with the directed edges of G, which we denote by �E := {(u, v) : {u, v} ∈
E(G)}. We say a function k : �E → Z is anti-symmetric if k(u,v) = −k(v,u) for all
(u, v) ∈ �E. Note that for such a function, k(u,v)(θu − θv) is well-defined for any
undirected edge {u, v} ∈ E(G). Now, plugging in the Fourier series of g into (64)
yields

Zspin
G,n,U =

∑

k : �E→Z
k anti-symmetric

∫

Ω′

∏
{u,v}∈E(G)

ĝ(k(u,v))e2πik(u,v)(θu−θv)dθ

=
∑

k : �E→Z
k anti-symmetric

ωkIk,

where

ωk :=
∏

{u,v}∈E(G)

ĝ(k(u,v)) and Ik :=
∫

Ω′

∏
{u,v}∈E(G)

e2πik(u,v)(θu−θv)dθ.

Denoting ku :=
∑

{u,v}∈E(G) k(u,v) for u ∈ E(G), we may rewrite Ik as

Ik =
∏

u∈V (G)

∫

Ω′
e2πikuθudθ.
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From this we see that Ik is either 1 or 0 according to whether k is a flow, i.e., it
satisfies ku = 0 for all u ∈ V (G). Therefore, we have shown that

Zspin
G,n,U =

∑

k : �E→Z
k flow

ωk.

When the weights ωk are non-negative, we interpret this relation as prescribing
a probability measure on flows, where the probability of a flow k is proportional
to ωk.

In order to obtain a model of height functions, we henceforth assume that G
is a finite planar graph (embedded in the plane). In this case, the set of flows on
G are in a ‘natural’ bijection with (suitably normalized) integer-valued height
functions on the dual graph of G. The dual graph of G, denoted by G∗, is the
planar graph obtained by placing a vertex at the center of every face of G, so that
each (directed) edge e in G corresponds to the unique (directed) edge e∗ in G∗

which intersects e (and is rotated by 90◦ in the clockwise direction). Note that G∗

has a distinguished vertex x0 corresponding to the unique infinite face of G. Let
F be the set of functions f : V (G∗) → Z having f(x0) = 0, which we call height-
functions. Given a function f ∈ F , define kf : �E → Z by kf

(x,y)∗ := f(x) − f(y).
It is straightforward to check that kf is a flow and that f �→ kf is injective.
It remains to show that any flow is obtained in this manner. Let k be a flow
and define f : V (G∗) → Z as follows. For any path p = (x0, x1, . . . , xm) in G∗

starting at x0, we define f(xm) := φ(p), where φ(p) :=
∑m

i=1 k(xi−1,xi)∗ . To show
that f is well-defined, we must check that φ(p) = φ(p′) for any two paths p and
p′ starting at x0 and ending at the same vertex. This in turn, is the same as
checking that φ(q) = 0 for any path q starting and ending at x0. It is easy to
see that it suffices to check this only for any cycle q in a set of cycles Q which
generates the cycle space of G∗. To this end, we use the fact that the cycle space
of a planar graph is generated by the basic cycles which correspond to the faces.
Thus, we may take Q to be the basic cycles in G∗ corresponding to the vertices
of G. That is, for every vertex v ∈ V (G), we have a cycle qv ∈ Q which consists
of the dual edges e∗ of the edges e incident to v. Finally, the property φ(qv) = 0
is precisely the defining property ku = 0 of a flow. It is now straightforward
to verify that kf = k. Thus, when ĝ is non-negative, we obtain a probability
measure on height-functions, where the probability of f ∈ F is proportional to

ωf :=
∏

{x,y}∈E(G∗)

ĝ(f(x) − f(y)).

We now specialize to the XY model, i.e., the ordinary spin O(2) model as
defined in (1), in which case the relevant potential is U(t) = −βt so that g(t) =
exp(β cos(2πt)). In this case, the Fourier coefficients are given by the modified
Bessel functions:

ĝ(k) = Ik(β) :=
∞∑

m=0

1
m! · (m + k + 1)!

(β/2)k+2m.
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Since these are positive, we have indeed found a random height-function repre-
sentation for the XY model in two dimensions.

As mentioned above, the Villain model also admits a similar representation.
The model is defined through (64) by taking the function g to be the “periodized
Gaussian” given by

g(t) :=
∞∑

k=−∞
e−β(t+k)2/2.

In this case, the Fourier coefficients are themselves Guassian,

ĝ(k) =
√

2π/β · e−2π2k2/β ,

thus yielding a height-function representation for the Villain model in two
dimensions.

3 The Loop O(n) Model

3.1 Definitions

Let H denote the hexagonal lattice. A loop is a finite subgraph of H which
is isomorphic to a simple cycle. A loop configuration is a spanning subgraph
of H in which every vertex has even degree; see Fig. 4. The non-trivial finite
connected components of a loop configuration are necessarily loops, however, a
loop configuration may also contain isolated vertices and infinite simple paths.
We shall often identify a loop configuration with its set of edges, disregarding
isolated vertices. A domain H is a non-empty finite connected induced subgraph
of H whose complement V (H)\V (H) induces a connected subgraph of H (in other
words, it does not have “holes”). Given a domain H, we denote by LoopConf(H)
the collection of all loop configurations ω that are contained in H. Finally, for a
loop configuration ω, we denote by L(ω) the number of loops in ω and by o(ω)
the number of edges of ω.

Let H be a domain and let n and x be positive real numbers. The loop
O(n) measure on H with edge weight x is the probability measure PH,n,x on
LoopConf(H) defined by

PH,n,x(ω) :=
xo(ω)nL(ω)

Z loop
H,n,x

, (65)

where Z loop
H,n,x, the partition function, is given by

Z loop
H,n,x :=

∑
ω∈LoopConf(H)

xo(ω)nL(ω).

The x = ∞ Model. We also consider the limit of the loop O(n) model as
the edge weight x tends to infinity. This means restricting the model to ‘opti-
mally packed loop configurations’, i.e., loop configurations having the maximum
possible number of edges.
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Fig. 4. A loop configuration is a subgraph of the hexagonal lattice in which every
vertex has even degree.

Let H be a domain and let n > 0. The loop O(n) measure on H with edge
weight x = ∞ is the probability measure on LoopConf(H) defined by

PH,n,∞(ω) := lim
x→∞PH,n,x(ω) =

{
nL(ω)

ZH,n,∞
if o(ω) = oH

0 otherwise
,

where oH := max{o(ω) : ω ∈ LoopConf(H)} and ZH,n,∞ is the unique constant
making PH,n,∞ a probability measure. We note that if a loop configuration ω ∈
LoopConf(H) is fully-packed, i.e., every vertex in V (H) has degree 2, then ω is
optimally packed, i.e., o(ω) = oH . In particular, if such a configuration exists
for the domain H, then the measure PH,n,∞ is supported on fully-packed loop
configurations.

Like in the spin model, special cases of the loop O(n) model have names of
their own:

– When n = 0, one formally obtains the self-avoiding walk (SAW); see Sect. 3.5.
– When n = 1, the model is equivalent to the Ising model on the triangular

lattice under the correspondence x = e−2β (the loops represent the interfaces
between spins of different value), which in turn is equivalent via the Kramers–
Wannier duality [83] to an Ising model on the dual hexagonal lattice.

◦ The special case x = 1, corresponding to the Ising model at infinite
temperature, is critical site percolation on the triangular lattice.
◦ The special case x = ∞, corresponding to the anti-ferromagnetic Ising
model at zero temperature, is a uniformly picked fully-packed loop con-
figuration, whence its complement is a uniformly picked perfect matching
of the vertices in the domain. The model is thus equivalent to the dimer
model.

– When n ≥ 2 is an integer, the model is a marginal of a discrete random
Lipschitz function on the triangular lattice. When n = 2 this function takes
integer values and when n ≥ 3 it takes values in the n-regular tree. See
Sect. 3.4 for more details. The special case n = 2 and x = ∞ is equivalent
to uniform proper 4-colorings of the triangular lattice [11] (the loops are
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obtained from a proper coloring with colors {0, 1, 2, 3} as the edges bordering
hexagons whose colors differ by ±1 modulo 4).

– When n = ∞ and nx6 = const, the model becomes the hard-hexagon model.
See Sect. 3.4 for more details.

– When n is the square root of a positive integer, the model is a marginal of the
dilute Potts model on the triangular lattice. See Sect. 3.4 for more details.

3.2 Relation to the Spin O(n) Model

We reiterate that the loop O(n) model is defined for any positive real n, whereas
the spin O(n) model is only defined for positive integer n. For integer n, there is
a connection between the loop and the spin O(n) models on a domain H ⊂ H.
Rewriting the partition function Zspin

H,n,β given by (2) using the approximation
et ≈ 1 + t gives

Zspin
H,n,β =

∫

Ω

∏
{u,v}∈E(H)

exp [β〈σu, σv〉] dσ

≈
∫

Ω

∏
{u,v}∈E(H)

(1 + β〈σu, σv〉) dσ

=
∑

ω⊂E(H)

(β/n)o(ω)

∫

Ω

∏
{u,v}∈E(ω)

〈
√

n · σu,
√

n · σv〉 dσ,

=
∑

ω∈LoopConf(H)

(β/n)o(ω)nL(ω),

where the last equality follows by splitting the integral into a product of integrals
on each connected component of ω and then using the following calculation.

Exercise. Let E ⊂ E(H) be finite and connected. Show that

∫

Ω

∏
{u,v}∈E

〈
√

n · σu,
√

n · σv〉 dσ =

{
n ifE is a loop
0 otherwise

.

(see [41, Appendix A] for the calculation)
Therefore, substituting x for β/n, we obtain

Zspin
H,n,nx ≈ Z loop

H,n,x.

In the same manner, the correlation ρu,v for u, v ∈ V (H) in the spin O(n) model
at inverse temperature β = nx may be approximated as follows.
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ρu,v =

∫

Ω

〈σu, σv〉
∏

{w,z}∈E(H)

exp [β〈σw, σz〉]

Zspin
H,n,β

(66)

≈ n ·

∑
λ∈LoopConf(H,u,v)

xo(λ)nL′(λ)J(λ)

Z loop
H,n,x

,

where LoopConf(H,u, v) is the set of spanning subgraphs of H in which the
degrees of u and v are odd and the degrees of all other vertices are even. Here,
for λ ∈ LoopConf(H,u, v), o(λ) is the number of edges of λ, L′(λ) is the number
of loops in λ after removing an arbitrary simple path in λ between u and v, and
J(λ) := 3n

n+2 if there are three disjoint paths in λ between u and v and J(λ) := 1
otherwise (in which case, there is a unique simple path in λ between u and v).

Exercise. Use the approximation et ≈ 1+t to obtain the asserted representation
in (66) (see [41, Appendix A] for the calculation).

We remark that for n = 1, since eβs = cosh(β)(1+s·tanh(β)) for s ∈ {−1, 1},
the above expansion can be made exact by choosing x = tanh(β). This yields an
exact duality between the ferromagnetic Ising model on the hexagonal lattice and
the ferromagnetic Ising model on the triangular lattice; a special case of the so-
called Kramers–Wannier duality [83]. Such duality maps the high-temperature
region to the low-temperature region providing a self-dual point on self-dual
lattices such as Z

2 (and also for the hexagonal-triangular lattice pair, using
an auxiliary star-triangle transformation), which turns out to be the critical
point [95].

Unfortunately the above approximation is not justified for any x > 0 when
n > 1. Nevertheless, (66) provides a heuristic connection between the spin and
the loop O(n) models and suggests that both these models reside in the same
universality class. For this reason, it is natural to ask whether the prediction
about the absence of phase transition is valid for the loop O(n) model.

Question: Does the quantity on the right-hand side of (66) decay exponentially
fast in the distance between u and v, uniformly in the domain H, whenever
n > 2 and x > 0?

This question is partially answered in [41], where it is shown that for all suffi-
ciently large n and any x > 0, the quantity on the right-hand side of (66) decays
exponentially fast for a large class of domains H. The result is a consequence of
a more detailed understanding of the loop O(n) model with large n, which we
elaborate on in Sect. 3.6.

3.3 Conjectured Phase Diagram and Rigorous Results

It is predicted [77,93,111] that the loop O(n) model exhibits critical behavior
when n ∈ [0, 2]; see Fig. 5. In this regime, the model should have a critical value
xc(n) with the formula
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xc(n) :=
1√

2 +
√

2 − n
. (67)

The prediction is that for x < xc the model is sub-critical in the sense that the
probability that a loop passing through a given point has length longer than
t decays exponentially in t. When x ≥ xc, the model should be critical, with
the same probability decaying only as a power-law in t and with the model
exhibiting a conformally-invariant scaling limit. Furthermore, there should be
two critical regimes: when x = xc and x > xc, each characterized by its own
conformally-invariant scaling limit (the same one for all x > xc and a different
one for x = xc). Kager and Nienhuis [77, Section 5.6] predict that in both cases,
the loops should scale in a suitable limit to random Schramm Löwner evolution
(SLE) curves, introduced by Schramm [104], with parameter κ satisfying

n = −2 cos
(

4π

κ

)
, (68)

(a) n = 1.4 and x = 0.57 < xc(n). (b) n = 1.4 and x = xc(n) ≈ 0.6.

(c) n = 1.4 and x = 0.63 > xc(n). (d) n = 0.5 and x = 0.6 > xc(n).

Fig. 5. Samples of random loop configurations on and around the critical line. Con-
figurations are on a 80 × 60 rectangular-shaped domain and are sampled via Glauber
dynamics for 100 million iterations started from the empty configuration. The longest
loops are highlighted (from longest to shortest: red, blue, green, purple, orange).
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(a) n = 1.5 and x = 1. (b) n = 2.5 and x = 1.

Fig. 6. Samples of random loop configurations on a 340 × 300 rectangular-shaped
domain.

where, however, we take the solution of the above equation to satisfy κ ∈ [83 , 4]
when x = xc and κ ∈ [4, 8] when x > xc. When the parameter n satisfies n > 2, it
is predicted that the model is always sub-critical in the sense of exponential decay
of loop lengths described above. These predictions have been mathematically
validated only in very special cases. See Figs. 5 and 6 for samples from the loop
O(n) model. See also the two bottom figures on the cover page which show
samples of the model with n = 0.5 and x = 0.6.

The physics literature considers the loop O(n) model also with negative n,
where the model is still defined by (65) but is now a signed measure. Critical
behavior is then predicted for n ∈ [−2, 2], with the same critical value (67) for x;
see [93]. Presumably formula (68) continues to describe the parameter κ of the
scaling limit of the model throughout this range. However, the precise meaning
of these predictions for negative n is less clear.

We list the main rigorous results on the loop O(n) model (Fig. 7).
In the critical percolation case, n = x = 1, Smirnov [110] proved that cross-

ing probabilities have a conformally-invariant scaling limit (given by Cardy’s
formula) and sketched a proof [110,111] for convergence of the exploration path
to SLE(6), following an argument of Schramm [104]. Camia and Newman [24]
proved this latter convergence and further showed [25–27] that the full scaling
limit is CLE(6), a member of the family of conformal loop ensembles introduced
by Sheffield [105].

In the Ising model case, n = 1, it is known that x = xc(1) = 1√
3

is critical [95]
with its interface scaling to SLE(3) [30,32,70,74,112] and its loops scaling to
CLE(3) [16].

In the self-avoiding walk case, n = 0, it was proved by Duminil-Copin and
Smirnov [44] that x = xc(0) = 1/

√
2 +

√
2 is critical (it is the inverse of the

connective constant of the hexagonal lattice; see Sect. 3.5), though conformal
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invariance and convergence to SLE have not been established. Furthermore, it
was shown that for x > xc(0) the self-avoiding walk is space-filling [40].

For large values of n, it has been shown by Duminil-Copin–Peled–Samotij–
Spinka [41] that there is exponential decay of loop lengths for all values of x (see
Sect. 3.6 for details).

For n ∈ [1, 2], it has been shown by Duminil-Copin–Glazman–Peled–
Spinka [39] that the model exhibits macroscopic loops at the critical point
x = xc(n). A main tool in the proof is the observation that the Ising-type spin
representation of the loop O(n) model, in which the loops form the interfaces
between ±1 spins on the triangular lattice, satisfies the FKG lattice condition
(i.e., has strong positive association) when n ≥ 1 and nx2 ≤ 1. Based on this
and ideas from [43] the authors deduce a dichotomy theorem when n and x
are in this range: Either the length of the loop passing through a given vertex
has exponential tail decay, or the model satisfies Russo–Seymour–Welsh (RSW)
type estimates, i.e., for some c ∈ (0, 1) and any given annulus whose outer radius
is twice its inner radius, the probability to see a loop which winds around the
annulus is between c and 1 − c. In this range of parameters, using a technique
of [58], it is further shown that the loop O(n) model has a unique Gibbs measure.

Fig. 7. The predicted phase diagram for the loop O(n) model. The critical line xc

separating the regime of exponential decay from the regime of macroscopic loops is
plotted. The region where a dichotomy between the two behaviors is proved is denoted
FKG regime. Orange lines illustrate regions where exponential decay is proved. Red
dots or lines mark regions where macroscopic loops are proven to occur. Dotted red lines
denote regions where exponential decay is ruled out. Picture adapted from Glazman–
Manolescu [61].

The high-temperature (ferromagnetic) Ising case, when n = 1 and 1√
3

< x <

1, can be shown to exhibit RSW type estimates using the techniques of [117].
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Another possibility is to rely on the aforementioned dichotomy: Exponential
tail decay can be ruled out by noting that the Ising model has a unique Gibbs
measure in this range [50, Theorem 3.25], which then cannot have an infinite
connected component of +’s, nor an infinite connected component of −’s (by an
argument of Zhang which rules out coexistence of the infinite components; see,
e.g., [66, Theorem 14.3]), so that every vertex is surrounded by infinitely many
loops (domain walls). Remarkably, the question of convergence of the loops to
CLE(6) for the high-temperature Ising model remains open.

We briefly mention some very recent developments: Beffara–Gayet [14] prove
that RSW type estimates hold for the (very-)high-temperature antiferromagnetic
Ising model, when n = 1 and 1 < x < 1 + ε for some small ε > 0. Glazman–
Manolescu [62] prove RSW type estimates for n = 2 and x = 1, where the loops
can be viewed as the level lines of a uniform Lipschitz function (see Sect. 3.4
below). Crawford–Glazman–Harel–Peled [34] rule out the possibility that the
length of loops has exponential tail decay for 1 ≤ n ≤ 1 + ε and 1 − ε ≤
x ≤ 1 for some small ε > 0. This implies RSW type estimates for 1 ≤ n ≤
1 + ε and 1 − ε ≤ x ≤ 1√

n
by the aforementioned dichotomy. They further

show that when 1 ≤ n ≤ 2 and x = 1 the model on a toroidal domain has a
non-contractible loop with non-negligible probability. Lastly, it is proved there
that when n = 1 and 1 < x ≤

√
3 (antiferromagnetic Ising) the model has

loops of large diameter (comparable to that of the domain) with non-negligible
probability. On the other side, Taggi [116] established exponential decay of loop
lengths when n > 0 and x ≤ (

√
2 +

√
2)−1 + ε(n), with ε(n) > 0 some function

of n. Glazman–Manolescu [61] further showed exponential decay for any n > 1
and x < 1√

3
+ ε(n), with ε(n) > 0 another function of n.

Many interesting questions remain open for the loop O(n) model, with some
of the more notable ones being: proving conformal invariance at any point except
n = 1, x = 1√

3
and n = x = 1, and showing the existence of large loops in the

remaining parts of the phase diagram: for 0 < n < 1 and any x, or for n = 1
and any x ∈ (

√
3,∞] (it is unknown even for the dimer model case, x = ∞), or

for 1 < n ≤ 2 and x > xc(n) (apart from the case n = 2, x = 1 and from the
neighborhood of n = x = 1 mentioned above).

3.4 Equivalent Models

The equivalent models discussed below do not reside on the hexagonal lattice,
but rather on its dual, the triangular lattice T, which is obtained by placing
a vertex at the center of every face (hexagon) of H, so that each edge e of H

corresponds to the unique edge e∗ of T which intersects e. Since vertices of T
are identified with faces of H, they will be called hexagons instead of vertices.
We also say that a vertex or an edge of H borders a hexagon if it borders the
corresponding face of H.

The Hard-Hexagon Model. As noted already in the paper [37] where the loop
O(n) model was introduced, taking the limit n → ∞ and nx6 → λ leads formally
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to the hard-hexagon model. As non-trivial loops (loops having length longer than
6) become less and less likely in this limit, hard-hexagon configurations consist
solely of trivial loops, with each such loop contributing a factor of λ to the
weight. Thus, the hard-hexagon model is the hard-core lattice gas model on the
triangular lattice T with fugacity λ. For this model, Baxter [12] (see also [13,
Chapter 14]) computed the critical fugacity

λc =
(
2 cos

(π

5

))5

=
1
2

(
11 + 5

√
5
)

≈ 11.09017,

and showed that as λ increases beyond the threshold λc, the model undergoes a
fluid-solid phase transition, from a homogeneous phase in which the sublattice
occupation frequencies are equal, to a phase in which one of the three sublattices
is favored. Additional information is obtained on the critical behavior, including
the fact that the mean density of hexagons is equal for each of the three sub-
lattices [12, Equation (13)] and the fact that the transition is of second order
[12, Equation (9)]. Baxter’s arguments use certain assumptions on the model
which appear not to have been mathematically justified. Still, this exact solu-
tion may suggest that the loop O(n) model with large n will also have a unique
transition point xc(n), that nxc(n)6 will converge to λc as n tends to infinity
and that the transition in x is of second order, with the model having a unique
Gibbs state when x = xc(n).

Exact Representations as Spin Models with Local Interactions. As
explained in the previous section, the loop O(n) is an approximation of the
spin O(n) model, a spin model on H with local interactions. Here we develop
exact representations of the loop O(n) model as spin models on T with local
interactions (see also [28]).

The spin space here will always be a discrete set S (finite or countably infinite)
and we shall restrict ourselves to the set Φ of spin configurations ϕ ∈ ST satisfy-
ing the condition that |{ϕ(y), ϕ(z), ϕ(w)}| ≤ 2 for any three mutually adjacent
hexagons y, z, w ∈ T. Define the ‘domain walls’ of a configuration ϕ ∈ Φ by

ωϕ :=
{
e ∈ E(H) : the edge e borders hexagons y, z ∈ T

satisfying ϕ(y) �= ϕ(z)
}
,

and observe that ωϕ is a loop configuration. For a domain H ⊂ H and a fixed
s0 ∈ S, let Φ(H) be the set of ϕ ∈ Φ satisfying the boundary condition ϕ(z) = s0

for any hexagon z ∈ T which is not entirely contained in H. Note that ωϕ ∈
LoopConf(H) for ϕ ∈ Φ(H).

We now define a spin model in a similar manner as in Sect. 2, with one
important difference: as we are now working on the triangular lattice, rather
than the square lattice, it is natural to consider triangular interactions, rather
than pairwise interactions. Precisely, given a (non-zero) symmetric interaction
h : S3 → [0,∞), i.e., h = h ◦ τ for any permutation τ ∈ S3, we consider the
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probability distribution on Φ(H) in which the probability of a configuration
ϕ ∈ Φ(H) is proportional to

∏
{y,z,w}

h(ϕ(y), ϕ(z), ϕ(w)), (69)

where the product is over triples {y, z, w} of mutually adjacent hexagons
y, z, w ∈ T, at least one of which has an edge in H. We note that in order
for this distribution to be well-defined when S is infinite, one must impose an
implicit condition on h to ensure that the sum of the above weights is finite.
Note also that this distribution is entirely defined by the collection of numbers
(ha)a∈S and (ha,b)a,b∈S,a�=b, where ha := h(a, a, a) and ha,b := h(a, b, b) (ha,b

need not equal hb,a in general).
Any such choice of spin space S and interaction h, gives rise via the map

ϕ �→ ωϕ to a probability distribution on LoopConf(H). The goal is then to
choose S and h in such a manner that this distribution coincides with the loop
O(n) measure PH,n,x. As we now show, there is in fact a general recipe for
constructing such examples.

Let G be a simple graph on vertex set S. We focus on the case that h
imposes the hard-core constraint that ha,b = 0 unless {a, b} is an edge of G. In
order words, the corresponding distribution on Φ(H) is supported on Lip(G),
the set of configurations ϕ ∈ ST satisfying the Lipschitz condition: if y, z ∈ T are
adjacent hexagons then either ϕ(y) = ϕ(z) or ϕ(y) is adjacent to ϕ(z) in G. We
note that, in general, neither Φ nor Lip(G) is contained in the other. However,
in the case that G contains no triangles, we have Lip(G) ⊂ Φ.

For simplicity, we now restrict ourselves to the case that S is finite. Let A be
the adjacency matrix of the graph G, i.e., A is a real symmetric matrix, indexed
by the set S and defined by Aa,b := 1{{a,b}∈E(G)} for a, b ∈ S. Let ψ be the
Perron–Frobenius eigenvector corresponding to the largest eigenvalue λ of A,
i.e., the components of ψ are non-negative and Aψ = λψ. We now choose the
interaction to be ha := 1 for all a ∈ S and ha,b := x(ψa/ψb)1/6 for all adjacent
a, b ∈ S.

Let us now show that if ϕ is a random spin configuration sampled accord-
ing to the distribution corresponding to the above choice of h, then ωϕ is dis-
tributed according to PH,λ,x. To this end, we must show that, for any fixed
ω ∈ LoopConf(H), the sum of weights in (69) over configurations in ϕ ∈ Φ(H)
having ωϕ = ω is proportional to xo(ω)nL(ω). To see this, observe that ω may have
nested loops and that by considering these loops one-by-one, from the innermost
to the outermost, it suffices to show that the contribution of any single loop �
is x|�|λ. More precisely, for any a ∈ S, the sum of weights in (69) over config-
urations ϕ which equal a on the exterior side of � and satisfy ωϕ = � is x|�|λ.
Indeed, this sum is precisely

∑
b∈S hm

b,ahm′
a,b, where m and m′ are the number

of vertices of � which are incident to an edge in the exterior and interior sides
of �, respectively. Geometrically, if one traverses � in counterclockwise direction,
then m and m′ are the number of left-hand and right-hand turns, respectively.



302 R. Peled and Y. Spinka

In particular, it always holds that m = m′ + 6. Thus,

∑
b∈S

hm
b,ahm′

a,b = xm+m′ ∑
b:{a,b}∈E(G)

(ψb/ψa)(m−m′)/6 = x|�| (Aψ)a

ψa
= x|�|λ.

We have thus shown that if there exists a finite graph whose adjacency matrix
has maximum eigenvalue n, then one may find an exact representation of the
loop O(n) model with any value of the edge-weight x as a spin model with local
interactions (and finite spin space). Not all values of n > 0 are obtainable as
such. The set of possible n in (0, 2) is known; They are the eigenvalues of the
ADE diagrams and form an infinite set in [1, 2) having 2 as its sole accumulation
point.

We remark that the above construction can sometimes be extended to the
case when G is an infinite, locally finite graph (i.e., all vertices have finite
degrees). In this case, the Perron–Frobenius eigenvector ψ is replaced by a non-
zero element ψ ∈ R

S such that ψ ≥ 0 and λψa =
∑

b:{a,b}∈E(G) ψb for some
λ > 0 and all a ∈ S. If such a ψ exists, then the arguments above continue to
hold without change.

Lipschitz Functions. When n is a positive integer, the loop O(n) model admits
a height function representation [37]. Let G = Tn be the n-regular tree (so that
T1 = {+,−} and T2 = Z) rooted at an arbitrary vertex ρ. Here, Lip(Tn) is the set
of 1-Lipschitz functions from T to Tn (where the metrics are the graph distances),
and moreover, Lip(Tn) ⊂ Φ as Tn does not contain triangles. In this case, one may
regard ωϕ as the ‘level lines’ of the height function ϕ ∈ Lip(Tn). Since λ = n is an
eigenvalue of Tn (in the sense discussed above; the eigenvector ψ is the constant
function), we see that if one samples a random function ϕ ∈ Lip(Tn)∩Φ(H) with
probability proportional to x|ωϕ|, then ωϕ is distributed according to PH,n,x. In
particular, the height function representation of the loop O(1) model is an Ising
model (which may be either ferromagnetic or antiferromagnetic according to
whether x < 1 or x > 1) and the height function representation of the loop O(2)
model is a restricted Solid-On-Solid model (an integer-valued Lipschitz function).
Andrews–Baxter–Forrester [7] studied a related type of restricted Solid-On-Solid
models.

The Dilute Potts Model. Let q ≥ 1 be an integer and set S := {0, 1, . . . , q}.
Let G be star graph on S in which 0 is the center, i.e., the edges of G are {0, i}
for 1 ≤ i ≤ q. Here, Lip(G) ⊂ Ψ and the elements of this set can be thought of
as configurations in a dilute Potts model : the value 0 represents a vacancy and
a positive value i represent a particle/spin of type i. In this case, the Perron–
Frobenius eigenvector is given by ψ(0) :=

√
q and ψ(i) := 1 for 1 ≤ i ≤ q, and

its corresponding eigenvalue is λ =
√

q. Thus, this model gives a representation
of the loop O(n) model for any n which is the square root of an integer.

Nienhuis [94] proposed a slightly different version of the dilute Potts model,
similar to the above representation. A configuration of this model in a domain
of the triangular lattice is an assignment of a pair (sz, tz) to each vertex z of the
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domain, where sz ∈ {1, . . . , q} represents a spin and tz ∈ {0, 1} denotes an occu-
pancy variable. The probability of configurations involves a hard-core constraint
that nearest-neighbor occupied sites must have equal spins (reminiscent of the
Edwards–Sokal coupling of the Potts and random-cluster models) and single-
site, nearest-neighbor and triangle interaction terms involving the occupancy
variables as in (69). With a certain choice of coupling constants, the marginal of
the model on the product variables (sztz)z has the same distribution as ϕ (with
the above choice of G), and thus, the marginal on the occupancy variables is
equivalent to the loop O(n) model (with n =

√
q). Nienhuis predicts this choice

of parameters to be part of the critical surface of the dilute Potts model. This
prediction is partially confirmed in [39] for the loop O(n) model with parameters
n ≥ 1 and nx2 ≤ 1.

3.5 Self-avoiding Walk and the Connective Constant

The loop O(n) model as defined in Sect. 3.1 is said to have vacant boundary
conditions. In this case, the probability of any non-empty loop configuration
tends to zero as n tends to zero. Thus, under vacant boundary conditions, the
n = 0 model is trivial. However, as can be done for the spin O(n) model, here too
one may impose different boundary conditions on the model, where the states of
certain edges are pre-specified. Taking boundary conditions for which precisely
two edges e1 and e2 on the boundary of the domain H are present, one forces
a self-avoiding path between these two edges within the domain (in addition
to possible loops). Under such boundary conditions, in the limit as n → 0, one
obtains a random self-avoiding walk. The probability of such a given self-avoiding
walk γ is proportional to xlength(γ). The partition function, Zsaw

H,x,e1,e2
, is given by

Zsaw
H,x,e1,e2

:=
∑

γ:e1→e2
γ⊂H

xlength(γ) =
∞∑

k=0

sH,e1,e2,kxk,

where sH,k,e1,e2 is the number of self-avoiding walks of length k from e1 to e2

in H.
We consider the related partition function of all self-avoiding walks starting

at a fixed vertex v, given by

Zsaw
x :=

∑
γ: γ0=v

xlength(γ) =
∞∑

k=0

skxk,

where sk is the number of self-avoiding walks of length k starting at v. The series
defining Zsaw

x has a radius of convergence xc ∈ [0,∞] so that Zsaw
x < ∞ when

0 < x < xc and Zsaw
x = ∞ when x > xc. This is the critical point of the model.

The critical value xc is directly related to the exponential rate of growth of sk.
An important and simple observation is that sk is sub-multiplicative. That is,

sk+m ≤ sksm.
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It follows that the limit
μ := lim

k→∞
s
1/k
k

exists and is finite. The number μ, called the connective constant of the hexagonal
lattice, clearly relates to the critical value via μ = 1/xc.

Exercise. Show that μ is well-defined and that μ = infk s
1/k
k .

Exercise. Show that 2k/2 ≤ sk ≤ 3 · 2k−1 and deduce that
√

2 ≤ μ ≤ 2.
Recently, Duminil-Copin and Smirnov [44] showed the following remarkable

result.

Theorem 7. The connective constant of the hexagonal lattice is

μ =
√

2 +
√

2.

We do not give the proof in these notes and refer the interested reader to [44].

3.6 Large n

It is believed that the loop O(n) model, although only an approximation of the
spin O(n) model, resides in the same universality class as the spin O(n) model.
Thus, as in the case of the spin O(n) model, it has been conjectured that the
loop O(n) model exhibits exponential decay of correlations when n > 2. Duminil-
Copin, Peled, Samotij and Spinka [41] established this for large n, showing that
long loops are exponentially unlikely to occur, uniformly in the edge weight x.
This result is the content of the first theorem below.

We begin with some definitions (see Fig. 8 for their illustration). Recall that
the triangular lattice T is the dual of the hexagonal lattice. Fix a proper 3-
coloring of T (there is a unique such coloring up to permutations of the colors),
and let T

0, T
1 and T

2 denote the color classes of this coloring. The 0-phase
ground state ω0

gnd is defined to be the (fully-packed) loop configuration consisting
of trivial loops (loops of length 6) around each hexagon in T

0. A domain H ⊂ H

is said to be of type 0 if no edge on its boundary belongs to ω0
gnd, or equivalently,

if every edge bordering a hexagon in T
0 has either both or neither of its endpoints

in V (H). Finally, we say that a loop surrounds a vertex u of H if any infinite
simple path in H starting at u intersects a vertex of this loop. In particular, if a
loop passes through a vertex then it surrounds it as well.

Theorem 8. There exist n0, c > 0 such that for any n ≥ n0, any x ∈ (0,∞] and
any domain H of type 0 the following holds. Suppose ω is sampled from the loop
O(n) model in domain H with edge weight x. Then, for any vertex u ∈ V (H)
and any integer k > 6,

P(there exists a loop of length k surrounding u) ≤ n−ck.
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Fig. 8. A proper 3-coloring of the triangular lattice T (the dual of the hexagonal lattice
H), inducing a partition of T into three color classes T0, T1, and T

2. The 0-phase ground
state ω0

gnd is the (fully-packed) loop configuration consisting of trivial loops around each
hexagon in T

0.

(a) n = 8 and x = 0.5. When x is small,
the limiting measure is unique for do-
mains with vacant boundary conditions,
and the model is in a dilute, disordered
phase.

(b) n = 8 and x = 2. When n is large and
x is not small, the model is in an ordered
phase where typical configurations are
small perturbations of the ground state.

Fig. 9. Two samples of random loop configurations with large n. Configurations are
on a 60 × 45 domain of type 0 and are sampled via Glauber dynamics for 100 million
iterations started from the empty configuration.

The reasons behind this exponential decay are quite different when x is small
or large. While there is no transition to slow decay of loop lengths as x increases,
there is a different kind of transition in terms of the structure of the random loop
configuration and, in particular, in how the loops pack in the domain. When x
is small, the model is dilute and disordered, whereas, when x is large, the model
is dense and ordered (a small perturbation of the 0-phase ground state ω0

gnd);
these behaviors are depicted in Fig. 9. We remark that it is this latter behavior
that makes the assumption that k > 6 necessary in the above theorem. The next
theorem makes these statements precise.
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Given a loop configuration ω and two vertices u and v in H, we say that u
and v are loop-connected if there exists a path between u and v consisting only of
vertices which belong to loops in ω, and we say that u and v are ground-connected
if there exists a path between u and v consisting only of vertices which belong
to loops in ω ∩ ω0

gnd.

Theorem 9. There exist C, c > 0 such that for any n > 0, any x ∈ (0,∞] and
any domain H of type 0 the following holds. Suppose ω is sampled from the loop
O(n) model in domain H with edge weight x. Then, for any vertex u ∈ V (H),
on the one hand,

P(u is loop-connected to a vertex at distance k from u) ≤ (C(n + 1)x6)ck, k ≥ 1,

and, on the other hand,

P(u is ground-connected to a vertex on the boundary of H)

≥ 1 − C(nmin{x6, 1})−c.

Note that the first bound is non-trivial when both x and nx6 are sufficiently
small, while the second bound is non-trivial when both n and nx6 are sufficiently
large. Thus, when n is large, the theorem establishes a change in behavior as
nx6 transitions from small to large values. In particular, when nx6 is small, any
fixed vertex is unlikely to be surrounded by a loop (of any size). On the other
hand, when nx6 is large, any fixed hexagon in T

0 is very likely to be surrounded
by a trivial loop. The proof for small x is very similar in nature to the high-
temperature case of the spin O(n) model, as described in Sect. 2.4, while the
proof for large x is more intricate.

We remark that several rigorous results on the behavior of general loop mod-
els on the Z

d lattice were obtained by Chayes, Pryadko and Shtengel [29]. These
include theorems of a similar nature to our Theorems 8 and 9. The proofs there
rely on reflection positivity and are thus tied to the Z

d lattice structure and
require as well that n be integer (which is a built-in feature of the loop models
studied in [29]). As we have not found a representation for the loop O(n) model
(even with integer n) which is reflection positive for large values of n and x, our
proofs proceed by different means.

In these notes, we give an extended overview of the proofs of Theorems 8
and 9, omitting most of the technical details. The techniques of the proofs are
combinatorial in nature and rely on a general principle captured by the following
simple lemma.

Lemma 4. Let p, q > 0 and let E and F be two events in a discrete probability
space. If there exists a map T : E → F such that P(T(e)) ≥ p · P(e) for every
e ∈ E, and |T−1(f)| ≤ q for every f ∈ F , then

P(E) ≤ q

p
· P(F ).
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Proof. We have

p · P(E) ≤
∑
e∈E

P(T(e)) =
∑
e∈E

∑
f∈F

P(f)1{T(e)=f}

=
∑
f∈F

|T−1(f)| · P(f) ≤ q · P(F ).

��

The results for small x are obtained via a fairly standard, and short, Peierls
argument, by applying the above lemma to a map which removes loops (see
Lemma 6 below). Thus, the primary focus here lies in the study of the loop O(n)
model for large x. In this regime, the main idea is to identify the region having
an atypical structure (which is called the breakup) and apply the above lemma
to a suitably defined ‘repair map’. This map takes a configuration ω sampled
in a domain of type 0 and having a large breakup, and returns a ‘repaired’
configuration in which the breakup is significantly reduced (see Fig. 11). In order
to use Lemma 4, it is important that the number of preimages of a given loop
configuration is exponentially smaller than the probability gain. This yields the
main lemma, Lemma 5, from which the results for large x are later deduced.

Basic Definitions. A circuit is a simple closed path in T of length at least 3.
We may view a circuit γ as a sequence of hexagons (γ0, . . . , γm) with γ0 = γm.
Define γ∗ to be the set of edges {γi, γi+1}∗ ∈ E(H) for 0 ≤ i < m. We now state
two standard geometric facts regarding circuits and domains, which may be seen
as a discrete version of the Jordan curve theorem. Proofs of these facts can be
found in [41, Appendix B].

Fact 1. If γ is a circuit then the removal of γ∗ splits H into exactly two con-
nected components, one of which is infinite, denoted by Ext(γ), and one of which
is finite, denoted by Int(γ). Moreover, each of these are induced subgraphs of H.

Fact 2. Circuits are in one-to-one correspondence with domains via γ ↔ Int(γ).

Hence, every domain H may be written as H = Int(γ) for some circuit γ.
Note also that H is of type 0 if and only if γ ⊂ T \ T

0. We denote the vertex
sets and edge sets of Int(γ),Ext(γ) by IntV(γ),ExtV(γ) and IntE(γ),ExtE(γ),
respectively. Note that

{IntV(γ),ExtV(γ)} is a partition of V (H)

and that
{IntE(γ),ExtE(γ), γ∗} is a partition of E(H).

We also define Inthex(γ) to be the set of faces of Int(γ), i.e., the set of hexagons
z ∈ T having all their six bordering vertices in IntV(γ). Since Int(γ) is induced,
this is equivalent to having all six bordering edges in IntE(γ).
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Definition 1. (c-flower, c-garden, c-cluster, vacant circuit; see Fig. 10).
Let c ∈ {0, 1, 2} and let ω be a loop configuration. A hexagon z ∈ T

c is a c-flower
of ω if it is surrounded by a trivial loop in ω. A subset E ⊂ E(H) is a c-garden
of ω if there exists a circuit σ ⊂ T \ T

c such that E = IntE(σ) ∪ σ∗ and every
z ∈ T

c ∩ ∂Inthex(σ) is a c-flower of ω. In this case, we denote σ(E) := σ. A
garden of ω is a c-garden of ω for some c ∈ {0, 1, 2}. A subset E ⊂ E(H) is a
c-cluster of ω if it is a c-garden of ω and it is not contained in any other garden
of ω. A cluster of ω is a c-cluster of ω for some c ∈ {0, 1, 2}. A circuit σ is
vacant in ω if ω ∩ σ∗ = ∅.

We stress the fact that a garden/cluster is a subset of the edges of H. We
remark that distinct clusters of ω are edge disjoint and that, moreover, distinct
c-clusters (for some c) are slightly separated from one another. Here and below,
when A is a subset of vertices of a graph G, we use ∂A to denote the (vertex)
boundary of A, i.e.,

∂A :=
{
u ∈ A : {u, v} ∈ E(G) for some v �∈ A

}
.

Statement of the Main Lemma. For a loop configuration ω and a vacant
circuit γ in ω, denote by V (ω, γ) the set of vertices v ∈ IntV(γ) such that
the three edges of H incident to v are not all contained in the same cluster of
ω ∩ IntE(γ). One may check that a vertex v ∈ IntV(γ) satisfies v ∈ V (ω, γ) if
and only if v is incident to an edge which is not in any such cluster or each of
its incident edges lies in a different such cluster. The set V (ω, γ) specifies the
deviation in ω from the 0-phase ground state along the interior boundary of γ.
The main lemma shows that having a large deviation is exponentially unlikely.

Lemma 5. There exists c > 0 such that for any n > 0, any x ∈ (0,∞] and any
circuit γ ⊂ T \ T0 the following holds. Suppose ω is sampled from the loop O(n)
model in domain Int(γ) with edge weight x. Then, for any positive integer k,

Fig. 10. A garden. The dashed line denotes a vacant circuit σ ⊂ T \ T
c, where c ∈

{0, 1, 2}. The edges inside σ, along with the edges crossing σ, then comprise a c-garden
of ω, since every hexagon in T

c ∩ ∂Inthex(σ) is surrounded by a trivial loop.
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P
(
∂IntV(γ) ⊂ V (ω, γ) and |V (ω, γ)| ≥ k

)
≤ (cn · min{x6, 1})−k/15.

Definition of the Repair Map. Fix a circuit γ ⊂ T \T0 and set H := Int(γ).
Consider a loop configuration ω such that γ is vacant in ω. The idea of the repair
map is to modify ω in the interior of γ, keeping the configuration unchanged in
the exterior of γ, as follows (see Fig. 11 for an illustration):

– Edges in 1-clusters are shifted down “into the 0-phase”.
– Edges in 2-clusters are shifted up “into the 0-phase”.
– Edges in 0-clusters are left untouched.
– The remaining edges which are not inside (the shifted) clusters, but are in

the interior of γ (these edges will be called bad), are overwritten to “match”
the 0-phase ground state, ω0

gnd.

In order to formalize this idea, we need a few definitions. A shift is a graph
automorphism of T which maps every hexagon to one of its neighbors. We hence-
forth fix a shift ↑ which maps T

0 to T
1 (and hence, maps T

1 to T
2 and T

2 to
T

0), and denote its inverse by ↓ . A shift naturally induces mappings on the ver-
tices and edges of H. We shall use the same symbols, ↑ and ↓ , to denote these
mappings. Endow T with the coordinate system given by (0, 2)Z+(

√
3, 1)Z and

recall that (T0,T1,T2) are the color classes of an arbitrary proper 3-coloring of
T. In the figures, we make the choice that (0, 0) ∈ T

0 and (0, 2) ∈ T
1 so that ↑

is the map (a, b) �→ (a, b + 2).
For a loop configuration ω ∈ LoopConf(H) and c ∈ {0, 1, 2}, let Ec(ω) ⊂

E(H) be the union of all c-clusters of ω, and define

Ebad(ω) :=
(
IntE(γ) ∪ γ∗) \

(
E0(ω) ∪ E1(ω) ↓ ∪ E2(ω) ↑ ), (70)

E(ω) :=
(
IntE(γ) ∪ γ∗) \

(
E0(ω) ∪ E1(ω) ∪ E2(ω)

)
. (71)

One may check that {E0(ω), E1(ω), E2(ω), E(ω)} is a partition of IntE(γ) ∪ γ∗

so that ω ∩E0(ω), ω ∩E1(ω), ω ∩E2(ω) and ω ∩E(ω) are pairwise disjoint loop
configurations. Finally, we define the repair map

R : LoopConf(H) → LoopConf(H)

by

R(ω) :=
(
ω ∩ E0(ω)

)
∪
(
ω ∩ E1(ω)

) ↓ ∪
(
ω ∩ E2(ω)

) ↑ ∪
(
ω0

gnd ∩ Ebad(ω)
)
.

The fact that the mapping is well-defined, i.e., that R(ω) is indeed in
LoopConf(H), is not completely straightforward. However, it is indeed well-
defined and, moreover,

ω ∩ E0(ω), (ω ∩ E1(ω)) ↓ ∪ (ω ∩ E2(ω)) ↑ and ω0
gnd ∩ Ebad(ω)

are pairwise disjoint loop configurations in LoopConf(H).

Proof of Lemma 5. Let V be such that ∂IntV(γ) ⊂ V ⊂ IntV(γ). We first bound
the probability of the event
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(a) The breakup is found by exploring
0-flowers from the boundary.

(b) The clusters are found within the
breakup (with 0/1/2-clusters shown in
green/red/blue).

(c) Bad edges are discarded. (d) The clusters are shifted into the 0-
phase.

(e) The empty area outside the shifted
clusters is now compatible with the 0-
phase ground state.

(f) Trivial loops are packed in the empty
area outside the shifted clusters.

Fig. 11. An illustration of finding the breakup and applying the repair map in it. The
initial loop configuration is modified step-by-step, resulting in a loop configuration with
many more loops and at least as many edges.
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EV := {ω ∈ LoopConf(H) : V (ω, γ) = V }.

To do so, we wish to apply Lemma 4 to the repair map. To this end, we must
estimate the gain in probability (parameter p in Lemma 4) and the number of
preimages of a given configuration (parameter q in Lemma 4). Let n > 0 and
x > 0. We may assume that n ≥ 1 and nx6 ≥ 1 as otherwise the lemma is trivial.
Then

P(R(ω)) ≥ (n · min{x6, 1})|V |/15 · P(ω) for ω ∈ EV , (72)

|EV ∩ R−1(ω′)| ≤ (2
√

2)|V | for ω′ ∈ LoopConf(H). (73)

The proof of (72) is based on a precise understanding of the change in the
number of edges Δo := o(R(ω)) − o(ω) and in the number of loops ΔL :=
L(R(ω)) − L(ω). Namely, one may show (see Fig. 11(c)) that

Δo = |V | − |ω ∩ E(ω)| and ΔL = |V |/6 − L(ω ∩ E(ω)).

Using this, one deduces that

0 ≤ Δo ≤ |V | and ΔL ≥ |V |
15 + |Δo|

10 ,

from which (72) easily follows.
The proof of (73) relies on the fact that the only loss of information incurred

by the repair map is in the bad edges (see Fig. 11(c)). More precisely, the mapping
ω �→ (R(ω), ω ∩ E(V )) is injective on EV . Thus, the size of EV ∩ R−1(ω′) is at
most the number of subsets of E(V ). Since |E(V )| ≤ 3|V |/2, we obtain (73).

Now, using (72) and (73), Lemma 4 implies that

P(EV ) ≤ (2
√

2)|V | · (n · min{x6, 1})−|V |/15.

To complete the proof, we must sum over the possible choices for V . For this, we
use a connectivity property of V (ω, γ). Let H× be the graph obtained from H by
adding an edge between each pair of opposite vertices of every hexagon, so that
H

× is a 6-regular non-planar graph. One may show that V (ω, γ) is connected in
H

× whenever ∂IntV(γ) ⊂ V (ω, γ). Thus, recalling Lemma 3, when n ·min{x6, 1}
is sufficiently large, we have

P
(
∂IntV(γ) ⊂ V (ω, γ) and |V (ω, γ)| ≥ k

)

≤
∑

V : |V |≥k

V connected in H
×

∂IntV(γ)⊂V ⊂IntV(γ)

P(EV )

≤
∞∑

�=k

C� · (2
√

2)� · (n · min{x6, 1})−�/15

≤ (cn · min{x6, 1})−k/15.

��
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Proofs of Main Theorems. The proofs of the theorems for large x mostly
rely on the main lemma, Lemma 5. The results for small x follow via a Peierls
argument, the basis of which is given by the following lemma that gives an upper
bound on the probability that a given collection of loops appears in a random
loop configuration.

Lemma 6. Let H be a domain, let n, x > 0 and let ω be sampled from the loop
O(n) model in domain H with edge weight x. Then, for any A ∈ LoopConf(H),
we have

P(A ⊂ ω) ≤ nL(A)xo(A).

Proof. Consider the map

T : {ω ∈ LoopConf(H) : A ⊂ ω} → LoopConf(H)

defined by
T(ω) := ω \ A.

Clearly, T is well-defined and injective. Moreover, since L(T(ω)) = L(ω) − L(A)
and o(T(ω)) = o(ω) − o(A), we have

P(T(ω)) = P(ω) · n−L(A)x−o(A).

Hence, the statement follows from Lemma 4.

Recall the notion of a loop surrounding a vertex given prior to Theorem8.

Corollary 2. Let H be a domain, let n, x > 0 and let ω be sampled from the loop
O(n) model in domain H with edge weight x. Then, for any vertex u ∈ V (H)
and any positive integer k, we have

P(there exists a loop of length k surrounding u) ≤ kn(2x)k.

Moreover, for any u1, . . . , um ∈ V (H) and k1, . . . , km ≥ 1 with k = k1+ · · ·+km,
we have

P(∀i there exists a distinct loop of length ki passing through ui) ≤ (2n)m(2x)k,

Proof. Denote by ak the number of simple paths of length k in H starting at a
given vertex. Clearly, ak ≤ 3 · 2k−1. It is then easy to see that the number of
loops of length k surrounding u is at most kak−1 ≤ k2k. Thus, the result follows
by the union bound and Lemma6.

The moreover part follows similarly from Lemma6 by noting that there are
at most ak1 · · · akm

≤ 2m+k loop configurations A consisting of exactly k loops
with the i-th loop having length ki and passing through ui.

The main lemma, Lemma 5, shows that for a given circuit γ (which is con-
tained in T \ T

c for some c), it is unlikely that the set V (ω, γ) is large. The set
V (ω, γ) specifies deviations from the ground states which are ‘visible’ from γ,



Lectures on the Spin and Loop O(n) Models 313

i.e., deviations which are not ‘hidden’ inside clusters. In Theorem8, we claim
that it is unlikely to see long loops surrounding a given vertex. Any such long
loop constitutes a deviation from all ground states. Thus, the theorem would
follow from the main lemma (in the main case, when x is large) if the long loop
was captured in V (ω, γ). The next lemma (whose proof we omit) bridges the gap
between the main lemma and the theorem, by showing that even when a devi-
ation is not captured by V (ω, γ), there is necessarily a smaller circuit σ which
captures it in V (ω, σ).

Lemma 7. Let ω be a loop configuration, let γ ⊂ T \ T
0 be a vacant circuit in

ω and let L be a non-trivial loop of ω in Int(γ). Then there exists c ∈ {0, 1, 2}
and a circuit σ ⊂ T \Tc such that Int(σ) ⊂ Int(γ), σ is vacant in ω and V (L) ∪
∂IntV(σ) ⊂ V (ω, σ).

Proof of Theorem 8. Suppose that n0 is a sufficiently large constant, let n ≥ n0,
let x ∈ (0,∞], let H be a domain of type 0 and let u ∈ V (H). Let ω be sampled
from the loop O(n) model in domain H with edge weight x. We shall estimate the
probability that u is surrounded by a non-trivial loop of length k. We consider
two cases, depending on the relative values of n and x.

Suppose first that nx6 < n1/50. Since n ≥ n0, we may assume that 2x ≤
n−4/25 and that kn−k/120 ≤ 1 for all k > 0. By Corollary 2, for every k ≥ 7,

P(there exists a loop of length k surrounding u) ≤ kn(2x)k ≤ kn1−4k/25

≤ kn−k/60 ≤ n−k/120.

Suppose now that nx6 ≥ n1/50. Since n ≥ n0, we may assume that n ·
min{x6, 1} is sufficiently large for our arguments to hold. Let L ⊂ H be a non-
trivial loop of length k surrounding u. Note that if L ⊂ ω then by Lemma 7, for
some c ∈ {0, 1, 2}, there exists a circuit σ ⊂ T \ T

c such that Int(σ) ⊂ H, σ is
vacant in ω and V (L) ∪ ∂IntV(σ) ⊂ V (ω, σ). Using the fact that H is of type
0, the domain Markov property and Lemma5 imply that for every fixed circuit
σ ⊂ T \ T

c with Int(σ) ⊂ H,

P
(
σ vacant and V (L) ∪ ∂IntV(σ) ⊂ V (ω, σ)

)

≤ (cn · min{x6, 1})−|V (L)∪∂IntV(σ)|/15.

Thus, denoting by G(u) the set of circuits σ contained in T \ T
c for some

c ∈ {0, 1, 2} and having u ∈ IntV(σ), we obtain

P(L ⊂ ω) ≤
∑

σ∈G(u)

(cn · min{x6, 1})−|V (L)∪∂IntV(σ)|/15

≤
∞∑

�=1

D�(cn · min{x6, 1})− max{k,�}/15 ≤ (cn · min{x6, 1})−k/15,

where we used the facts that the length of a circuit σ such that |∂IntV(σ)| = �
is at most 3�, that the number of circuits σ of length at most 3� with u ∈
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IntV(σ) is bounded by D� for some sufficiently large constant D, and in the last
inequality we used the assumption that n · min{x6, 1} is sufficiently large. Since
the number of loops of length k surrounding a given vertex is smaller than k2k,
our assumptions that nx6 ≥ n1/50 and n ≥ n0 yield

P(there exists a loop of length k surrounding u) ≤ k2k(cn1/50)−k/15 ≤ n−k/800.

��
Proof of Theorem 9. Let n > 0, let x ∈ (0,∞], let H be a domain of type 0 and
let u ∈ V (H). Let ω be sampled from the loop O(n) model in domain H with
edge weight x.

We first prove the upper bound on the probability that u is loop-connected
to distance k. For this, we may assume that x and nx6 are sufficiently small as
the bound is trivial otherwise. Denote u0 := u and observe that if u is loop-
connected to some vertex at distance k from u, then there exist integers m ≥ 1,
�1, . . . , �m ≥ 6 and vertices u1, . . . , um ∈ V (H) such that k ≤ � := �1 + · · · + �m

and, for all 1 ≤ i ≤ m, dist(ui, ui−1) ≤ �i and ui belongs to a distinct loop of ω
of length �i. Thus, summing over the possible choices (for brevity, we omit the
conditions on �i and ui in the sum below) and applying Corollary 2, we obtain

P

(
u is loop-connected

to distance k

)

≤
∑
�≥k

�/6≥m≥1

∑
�1,...,�m
u1,...,um

P(∀i ui belongs to a distinct loop of length �i)

≤
∑
�≥k

� · 2� · 3� · (2n + 1)�/6(2x)�

≤
∑
�≥k

(C(n + 1)x6)�/6 ≤ C(C(n + 1)x6)k/6.

We now prove the lower bound on the probability that u is ground-connected
to the boundary of H, i.e., that u and v are ground-connected for some v ∈
∂V (H). For this, we may assume that both n and nx6 are sufficiently large
as the bound is trivial otherwise. Assume that u is not ground-connected to
the boundary of H. Let A(ω) be the set of vertices of H belonging to loops in
ω ∩ ω0

gnd and let B(ω) be the unique infinite connected component of A(ω) ∪
(V (H) \ V (H)). Note that u /∈ B(ω) by assumption and define the breakup C to
be the connected component of H \ B(ω) containing u. One may check that the
subgraph induced by C is a domain of type 0, and that the enclosing circuit Γ
(i.e., the circuit satisfying C = IntV(Γ), which exists by Fact 2) is vacant in ω and
is contained in T \ T

0. Furthermore, we have ∂IntV(Γ) ⊂ V (ω,Γ). Indeed, this
follows as Γ is vacant in ω and, by the definition of B(ω), no vertex of ∂IntV(Γ)
belongs to a trivial loop surrounding a hexagon in T

0. Thus, denoting by G the
set of circuits γ ⊂ T \ T

0 having u ∈ IntV(γ), Lemma 5 implies that
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P

(
u is not ground-connected

to the boundary of H

)

≤
∑
γ∈G

P
(
γ vacant and ∂IntV(γ) ⊂ V (ω, γ)

)

≤
∑
γ∈G

(cn · min{x6, 1})−|∂IntV(γ)|/15

≤
∑
k≥1

Dk(cn · min{x6, 1})−k/15 ≤ C(n · min{x6, 1})−c,

where in the third inequality we used the facts that the length of a circuit γ such
that |∂IntV(γ)| = k is at most 3k, and that the number of circuits of length at
most 3k surrounding u is bounded by Dk for some sufficiently large constant D.

References

1. Aizenman, M.: Absence of an intermediate phase for a general class of one-
component ferromagnetic models. Phys. Rev. Lett. 54(8), 839 (1985)

2. Aizenman, M.: Rigorous studies of critical behavior. II. In: Statistical Physics
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55. Fröhlich, J., Spencer, T.: Massless phases and symmetry restoration in abelian
gauge theories and spin systems. Commun. Math. Phys. 83(3), 411–454 (1982)

http://arxiv.org/abs/1707.09335
http://arxiv.org/abs/1705.03104
http://www.unige.ch/math/folks/velenik/smbook
http://www.unige.ch/math/folks/velenik/smbook
http://projecteuclid.org/getRecord?id=euclid.cmp/1103920388


318 R. Peled and Y. Spinka
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Abstract. The problem of predictability, or “nature vs. nurture”, in
both ordered and disordered Ising systems following a deep quench from
infinite to zero temperature is reviewed. Two questions are addressed.
The first deals with the nature of the final state: for an infinite system,
does every spin flip infinitely often, or does every spin flip only finitely
many times, or do some spins flip infinitely often and others finitely
often? Once this question is determined, the evolution of the system from
its initial state can be studied with attention to the issue of how much
information contained in the final state depends on that contained in the
initial state, and how much depends on the detailed history of the system.
This problem has been addressed both analytically and numerically in
several papers, and their main methods, results, and conclusions will be
reviewed. The discussion closes with some open problems that remain to
be addressed.

Keywords: Nature vs. nurture · Discrete spin dynamics · Deep
quench · Persistence · Aging · Chaotic time dependence · Damage
spreading · Spin glasses · Random ferromagnets

1 Introduction

It is a great pleasure to contribute to this volume in honor of Chuck Newman’s
70th birthday. Chuck has made so many fundamental contributions to proba-
bility theory, mathematical statistical mechanics, percolation theory, and many
related fields that it was difficult to choose which topic to write about. The prob-
lem was resolved by settling on a problem of longstanding interest to Chuck, and
one in which he remains heavily involved: the nonequilibrium dynamics of inter-
acting spin systems, in particular following a deep quench, in which a system at
high temperature is rapidly cooled to low temperature, after which it evolves
according to equilibrium dynamics.
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Our initial foray into this problem appeared in [24], although we had earlier
looked at the closely related problems of persistence [25] and (somewhat later)
aging [16]. Our initial interest was in determining how and under what condi-
tions equilibration occurs (or doesn’t occur) in an infinite system following a
deep quench. One has to specify first exactly what one means by “equilibration
in an infinite system”. Our proposal was that one can sensibly talk about a ther-
modynamic system settling down to an equilibrium state in the sense of local
equilibration: that is, fix a region of diameter L and ask whether after a finite
time τ(L) domain walls cease to sweep across the region. If the answer is yes,
i.e., if every finite L corresponds to a τ(L) < ∞ after which no spins inside the
region ever flip again, then the infinite system locally equilibrates. (It’s not only
perfectly fine, but also expected in most cases, that τ(L) → ∞ as L → ∞.)

The main thrust of [24] then went off in a different direction, but it set the
seeds for further examination of the problem of local equilibration, its presence
or absence in given systems, and its consequences. A paper with Seema Nanda
soon followed that focused strictly on zero temperature [21] ([24] studied positive
temperature only), with numerous results that began the sorting of systems
in which local equilibration occurred and those in which it did not. At zero
temperature, a new set of issues and problems arises, in particular the possibility
of trapping in a metastable state [26]; nevertheless, if every spin flips only a finite
number of times, then local equilibration has occurred, regardless of whether the
final state is metastable or a global minimum.

2 Local Equilibration, Weak Nonequilibration, and
Chaotic Time Dependence

The first question to be resolved is then whether local equilibration occurs for
a given system. When it does not occur, then there are further questions to be
resolved. There are two possibilities when local nonequilibration (LNE) mani-
fests itself: if one averages over all dynamical realizations, does the dynamically
averaged configuration have a limit—i.e., is there a limiting distribution of con-
figurations? Or does even the distribution not settle down? We refer to the first
possibility as “weak LNE”, while the second is referred to as chaotic time depen-
dence (CTD) [24]. Weak LNE implies a complete lack of predictability, while
CTD implies that some amount of predictability remains [21,24].

These claims are justified as follows. Consider for specificity the infinite uni-
form ferromagnet and consider a fixed finite region centered at the origin. If
weak LNE occurs, then (because of global spin-flip symmetry) after some time
roughly half the dynamical realizations are in the all-plus state and half are in the
all-minus state in that region. This then remains true for all subsequent times,
although in any particular dynamical realization, the system never settles down
into either — the spin configuration in the finite region continues to alternate
(on increasingly long timescales) between the all-plus and all-minus states.

On the other hand, if CTD occurs, then the dynamical averaging fails to fully
mix the two possible outcomes at any time; a time-independent distribution is
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never achieved. In that case, given the initial configuration, one retains some
predictive power at arbitrarily large times. These will presumably reflect fluctu-
ations favoring one phase or the other (in that particular region) in the initial
state. Compare this to weak LNE, which requires stronger mixing that destroys
information contained in these initial fluctuations. Because at zero temperature
the configuration evolves according to a deterministic set of rules (given the ini-
tial configuration and a realization of the dynamics), the lack of a limit of the
averaged configuration in CTD corresponds to the usual notions of deterministic
chaos, hence the name “chaotic time dependence”. It is amusing that in this con-
text, chaotic time dependence implies greater predictability than its nonchaotic
alternative.

These considerations motivate the following specific question, first proposed
in [24]: given a typical initial configuration, which then evolves under a specified
dynamics, how much can one predict about the state of the system at later times?
We have colloquially referred to this as a “nature vs. nurture” problem, with
“nature” representing the influence of the initial configuration and “nurture”
representing the influence of the random dynamics.

The study of nature vs. nurture therefore provides interesting information
on some central dynamical issues concerning different classes of models. This
problem is related to the general area of phase ordering kinetics [3]. In particu-
lar, Krapivsky, Redner and collaborators [29,30] investigated both the 2D and
3D Ising models with zero temperature Glauber dynamics to understand the
time scales and final states of the dynamics. Derrida, Bray and Godrèche intro-
duced the persistence exponent [12], which characterizes the power law decay of
the fraction of spins that are unchanged from their initial value as a function
of time after a quench. This exponent was measured for the zero temperature
2D Ising model by Stauffer [32] and calculated exactly for 1D by Derrida, Hakim
and Pasquier [13].

3 Uniform vs. Disordered Systems

From here on, we restrict our attention to Ising systems at zero temperature
and in the absence of any external field, where the bulk (but not all) of our
studies have focused. In every case, we start with an infinite temperature spin
configuration; i.e., the starting configuration is a realization of a Bernoulli process
in which each spin is chosen independently of the others following the flip of a
fair coin. The ensuing evolution of the system is governed by zero-temperature
Glauber dynamics, in which each spin has an attached Poisson clock with rate 1.
When a spin’s clock rings, it looks at its neighbors and computes the energy
change ΔE associated with flipping (with all other spins remaining fixed). If
the energy decreases (ΔE < 0) as a result of the flip, the flip is carried out. If
the energy increases (ΔE > 0), the flip is not accepted. If the energy remains
the same (ΔE = 0), a flip is carried out with probability 1/2. This last “tie-
breaking” rule can occur only for models (such as the homogenous ferromagnet,
or the ±J spin glass) in which a zero-energy flip can occur; for models with
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continuous coupling distributions, there is zero probability of a tie. (This is also
the case for uniform systems with an odd number of neighbors, such as the 2D
uniform ferromagnet on the honeycomb lattice.)

For a uniform system, there are two sources of randomness in the problem:
the choice of realization of the initial spin configuration, and the realization of
the dynamics (i.e., the order in which Poisson clocks for different spins ring, and
for models where zero-energy flips are possible, the results of the tie-breaking
coin flips). For disordered systems, a third source of randomness enters in the
choice of realization of the couplings.

As indicated in the Introduction, the first question that must be resolved is
whether the system under study equilibrates locally. This is generally a difficult
problem, and our knowledge remains incomplete. Nevertheless, we have obtained
results on several systems that include some of the most studied in statistical
mechanics.

The simplest is the 1D Ising chain. For the uniform ferromagnetic chain, it
was proved in [21] (although the result was known earlier [1,5]) that there is
no local equilibration: every spin flips infinitely often. In general dimension, the
Hamiltonian is

H = −
∑

〈x,y〉
σxσy , (1)

where σx = ±1 is the spin at site x and 〈·〉 denotes a sum over nearest neighbor
spins only.

The proof that every spin flips infinitely often is straightforward and will be
informally summarized here. (For the remainder of the paper, most results will
be quoted, with references to the original papers for the detailed proofs.) To
begin, it is easy to see that the only fixed points of the dynamics are σx = +1
for all x or σx = −1 for all x. Let ω denote a realization of the dynamics and σ0

a realization of the initial conditions. Then, because both are i.i.d., their joint
distribution Pσ0,ω is translation-invariant and translation-ergodic. Because the
events that the system lands in the all-plus or the all-minus final states are each
translation-invariant, and because both the initial condition and the dynamics
are invariant under a global spin flip, each of these events has Pσ0,ω-probability
zero.

Now let A+
x be the event that σx flips only finitely many times and its final

state is +1; similarly for A−
x . By the same reasoning as above, we must have

Pσ0,ω(A+
x ) = Pσ0,ω(A−

x ) = p, with 0 ≤ p ≤ 1/2. If p > 0, then there must exist a
pair of spins at two distinct sites x and x′ with opposite final states. This implies
a domain wall somewhere between the two that never moves past either one. But
it is easy to see that, with positive probability in the dynamics, a sequence of
clock rings exists that moves the domain wall outside of this confined range,
leading to a contradiction.

We will call systems in which every spin flips infinitely often as being in class
I; if every spin flips only finitely often, we refer to it as being in class F . There
are also systems in which some spins flip infinitely often and others only finitely
often; we refer to these as being in class M. In [21] it was proved that the 2D
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uniform ferromagnet also belongs to class I; the proof is similar in spirit to the
1D case but is slightly more elaborate.

What about the uniform ferromagnet in higher than two dimensions? This
remains an open problem. Rather old numerical studies [32] indicate that above
five dimensions these models are no longer in class I, but the situation remains
unclear. The possible presence of dynamical fixed points with complicated
geometries in three dimensions and above have so far prevented further ana-
lytical progress.

Before leaving the subject of the uniform ferromagnet, it’s worth noting that
Chuck and collaborators have looked at other mathematically interesting situa-
tions, including quasi-2D slabs of varying thicknesses and boundary conditions
(which they showed are either type F or M depending on thickness and bound-
ary condition) [7], and on Z

2 with a single fixed spin (class I, modulo the frozen
spin) [8].

Our discussion has focused so far on uniform ferromagnets. What about
disordered systems, in particular, random-bond Ising models? We consider two
important classes: random ferromagnets, in which the couplings are i.i.d. non-
negative random variables, and spin glasses, where couplings can be positive or
negative. (Minor point: in the latter case, if the coupling distribution is asym-
metrically distributed about zero, one will have a ferromagnet if the average ratio
of positive to negative couplings is sufficiently high. But it turns out this will
have no effect on determining whether equilibration occurs.) The Hamiltonian
is now

H = −
∑

〈x,y〉
Jxyσxσy , (2)

where the Jxy are independent random variables chosen from a common proba-
bility distribution.

If one is interested in thermodynamic behavior — e.g., presence or absence
of a phase transition, or the number of pure states at a fixed positive tempera-
ture and dimension — then central limit theorem-type considerations lead one
to expect that the form of the coupling distribution is unimportant, as long as
certain features of the distribution, such as mean and variance, are unchanged.
So, for example, one expects the same thermodynamic behavior when the cou-
pling distribution is the normal distribution N(0, 1) or ±1, the latter referring
to a distribution where each coupling is assigned the value ±1 independently
with the flip of a fair coin.

However, from the point of view of dynamics, particularly with regard to the
question of whether local equilibration occurs, the differences between distribu-
tions becomes important. In particular, Theorem 3 in [21] shows that, under very
mild conditions (existence of a finite mean), any model with Hamiltonian (2)
and with i.i.d. couplings chosen from a continuous distribution will belong to
class F .

In fact the proof is more general, showing that in any discrete-spin model
there are only finitely many flips of any spin resulting in a nonzero energy change.
This immediately implies that models belonging to class I (or M), such as the
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1D and 2D uniform ferromagnets, do so exclusively because of an infinite number
of zero-energy flips at each site (or a subset of sites). Consequently, models with
continuous coupling distributions all belong to class F , because the chance of a
tie at any site has zero probability; but the same conclusion applies, say, to the
above-mentioned 2D uniform ferromagnet on a honeycomb lattice, where the
chance of a tie is also zero.

Consequently, the question of the ultimate dynamical fate of a disordered
system with continuous coupling distribution is answered in all dimensions.

The restriction to finite mean was needed for technical reasons in the proof,
but may not be necessary. Also in [21] it was proved that the so-called highly
disordered models [2,22,23] in any dimension belong to class F . These are mod-
els in which the coupling magnitudes are sufficiently “stretched out” so that the
magnitude of any coupling is at least twice the value of the next smaller mag-
nitude and no more than half that of the next larger magnitude. (For a formal
definition, see [21].) Of course, this needs to be done in a size-dependent manner,
rescaling the values of the couplings as one increases the volume under considera-
tion [22,23]. It turns out that 1D chains with continuous coupling distributions,
although not satisfying the above criterion, still belong to this class. That is,
1D chains with any continuous coupling distribution, regardless of whether the
mean is finite, will fall into class F .

As a final remark on continuous coupling distributions in general, an impor-
tant point is that it doesn’t matter (for the purposes of whether all spins even-
tually fixate) whether one is talking about a random ferromagnet or a spin
glass—the signs of the coupling do not enter into these considerations, only the
coupling magnitudes.

We close this section by mentioning a result for a model with discrete disor-
der: the ±J spin glass in 2D. It was shown in [17] that this model belongs to
class M. We are unaware of any other results on this class of models in terms
of their final evolutionary states.

4 Nature vs. Nurture

Given the classification of systems in the previous section, we turn now to the
main focus of this review—namely, the extent to which information contained
in a configuration at time t can be inferred from knowledge of the initial state
of the system. We first need to quantify this concept, and the approach used
rests on the idea of determining what proportion of the information contained
in the state at time t depends on the initial condition and what proportion on
the realization of the dynamics.

If the system is type I, one might expect that the information contained in
the initial state will decay to zero as t → ∞. We will discuss below how this is
indeed the case in the 1D and 2D uniform ferromagnets, where the decay takes
the form of a power law. This leads to a new exponent characterizing the power-
law decay, which we have denoted the heritability exponent. We will return to
the heritability exponent in Sect. 4.2.
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We turn next to the (perhaps) simpler case of type-F systems. Because these
by definition equilibrate locally, we compare the final state with the initial state,
averaged over many dynamical trials, to determine to what degree initial infor-
mation has been retained. In [21] we introduced a type of dynamical order param-
eter, denoted qD (here “D” refers to dynamical, not dimension).

Let σ0 denote the realization of the initial condition and σt the configuration
at time t later. This of course depends on the dynamical realization ω, but to
keep the notation from becoming too unwieldy, we suppress the dependence of
σt on σ0 and ω. Let 〈σx〉t denote the state of σx averaged over all dynamical
realizations up to time t for a fixed σ0. We then study the resulting quantity
averaged over all initial configurations and (if the system is disordered) coupling
realizations.

Denoting the latter averages (with respect to the joint distribution PJ ,σ0 =
PJ × Pσ0) by EJ ,σ0 , we define qD = limt→∞ qt (providing the limit exists),
where

qt = lim
L→∞

|ΛL|−1
∑

x∈ΛL

(〈σx〉t)2 = EJ ,σ0(〈σx〉 2
t ) (3)

and ΛL is a d-dimensional cube of side L centered at the origin. The equivalence
of the two formulas for qt in (3) follows from translation-ergodicity [21].

The order parameter qD measures the extent to which σ∞ is determined by
σ0 rather than by ω; it is a dynamical analog to the usual Edwards-Anderson
order parameter.

4.1 1D and Highly Disordered Models

The dynamical order parameter can be exactly calculated for the 1D Ising chain.
For the uniform ferromagnet, σ∞

x does not exist. But it does when the couplings
are drawn from a continuous distribution (the details of the distribution are
unimportant, as long as its support is continuous), and moreover for these models
qD = 1/2. The result and proof appear in [21], but the argument underlying
the result is easy to state informally. The basic idea is to note that every spin
lives in the domain of influence of a “bully bond”. This is a coupling whose
magnitude is larger than the couplings to either side; such a coupling must be
satisfied in any fixed point of the 1-spin-flip dynamics (and more generally, in
any ground state). As one moves along the chain starting from either side of the
bully bond, couplings decrease in magnitude until arriving at a local minimum:
i.e., a coupling whose magnitude is smaller than the couplings to either side.
(Of course, the bond whose coupling value is a local minimum could be adjacent
to the bully bond.)

The domain of influence of the bully bond is then the set of spins that live
on the sites of the bonds to either of its sides until one reaches the nearest local
minimum bonds to its right and left. For the local minimum bond to the right of
the bully bond, the spin on its lefthand site belongs to the domain of influence of
the bully bond; for the local minimum bond to the left of the bully bond, the spin
on its righthand site belongs to the domain of influence of the bully bond. (The
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remaining two spins on the two local minimum bonds belong to other domains of
influence.) In this way the entire chain is partitioned into domains of influence,
each “governed” by a single bully bond.

Regardless of the dynamical realization, it must be the case that once the
bully bond is satisfied, the final state of every spin in its domain of influence is
completely determined. Now consider the initial state σ0. In a.e. realization of
the initial state, half the bully bonds will be satisfied and half will be unsatisfied.
For those that are satisfied, the final state of every spin in its domain of influence
is completely determined by the initial state; i.e., a.e. realization of the dynamics
will result in the same final state. For those that are unsatisfied, the final state
is determined by which Poisson clock, of the two spins on the sites connected
to the bully bond, rings first. Since these two events have equal probability,
and since the two possible outcomes give equal and opposite contributions to
the twin overlap, all spins in such domains of influence contribute zero to qD.
Consequently, qD = 1/2 for the continuously disordered 1D chain: in σ∞ half the
final states of the spins are completely determined by the initial configuration,
and half are completely determined by the dynamics.

For highly disordered models in any dimension, qD is also 1/2. The main
idea behind the proof is similar to that above, but more involved. Here, one
can define influence clusters of similarly defined bully bonds, but one needs to
show as well that these influence clusters do not percolate. Details can be found
in [21].

Before leaving this section, it is worth noting that in models with continuous
disorder on the Euclidean lattice Z

d with 1 < d < ∞, an argument similarly
based on bully bonds can be used to show that 0 < qD < 1. In any dimension,
the density of bully bonds is strictly positive (though decreasing as dimension
increases). If ρb(d) > 0 is the density of bully bonds in d dimensions, then
considerations similar to those above provide a lower bound of (1/2)ρb(d) and
an upper bound of 1 − (1/2)ρb(d) for qD.

Needless to say, these are poor upper and lower bounds; the main point is
that 0 < qD < 1 for disordered models in any finite dimension. We return to this
discussion is Sect. 6.

4.2 Heritability, Damage Spreading, and Persistence

We turn now to type-I systems, in which σ∞
x does not exist for any x, and

therefore qD is not defined. However, qt remains perfectly well-defined for all
finite t, and one can study this quantity to determine how the initial information
contained in σ0 changes with time.

If one is studying the system numerically (necessary in most cases), then
one can model qt in the following way: prepare two Ising systems with the same
initial configuration, and then allow them to evolve independently using zero-
temperature Glauber dynamics. One then computes the spin overlap between
these “twin” copies, chooses another initial condition, and so on, eventually
computing a twin overlap over many different initial conditions. This overlap as
a function of time, which we refer to as the “heritability”, is essentially the same
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as qt, and for the 2D uniform ferromagnet was found to decay as a power law
in time [34]. We denote the exponent θh associated with the power-law decay of
heritability as the “heritability exponent”.

Heritability is the opposite of “damage spreading” [6,19,31], given that the
latter involves starting with two slightly different initial configurations and let-
ting them evolve with the same dynamical realization. In damage spreading
studies one is interested in the extent of the spread of the initial difference
throughout the system as time proceeds.

The nature vs. nurture question is also related to persistence [12], which stud-
ies the fraction of spins that have not flipped up to time t. This was found to
decay as a power law in a number of systems, in particular uniform ferromagnets
and Potts models in low dimensions, and the associated decay exponent θp is
known as the “persistence exponent”. Although the concepts are related, heri-
tability is not the same as persistence, which asks which spins have not flipped
up to a time t. In contrast, heritability asks to what extent the information con-
tained in the initial state persists up to time t. A spin may have flipped multiple
times during this interval but its final state might still be predictable knowing
the initial condition.

5 The 1D and 2D Uniform Ferromagnets

Both the persistence and heritability exponents can be computed exactly in the
1D uniform Ising ferromagnet. It was shown in [13,14] that θp = 3/8 for this
system. Correspondingly, it can be shown that θh = 1/2, as discussed in [34],
by using the mapping to the voter model and coalescing random walks (see,
e.g., [14,16]).

The 2D uniform Ising ferromagnet on the square lattice is considerably more
difficult, and requires numerical study. The (finite-volume) absorbing states
include not only the uniform plus and minus states, but also “striped” con-
figurations which appear in roughly 1/3 of the runs [29]. A striped state has
one (or more) vertical or horizontal stripes (but not both) whose boundaries
constitute domain walls separating regions of antiparallel spin orientation.

An initial study of the nature vs. nurture problem was reported in [9], in
which evidence was found for chaotic time dependence. However, the problem
was not fully analyzed and solved until almost a decade later, when Ye et al. [34]
showed that a power-law decay of initial information did occur and computed
the heritability exponent.

Ye et al. did twin studies on 21 L × L squares, from L = 10 to L = 500. For
each size 30,000 runs on independent pairs of twins were taken out to times such
that (almost) all of the samples landed in an absorbing state. (For each initial
condition only two dynamical trajectories were computed, one for each twin.)
Because these runs were done on finite lattices, the authors studied qt(L) =
1
N

∑N
i=1 σ1

i (t)σ2
i (t), where σ1

i (t) denotes the state of the ith spin at time t in
twin 1, and similarly for σ2

i (t).
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For each pair of twins qt(L) was computed, and averaging over all runs gave
the average qt(L). Ye et al. studied both the size dependence of the final overlap,
q∞(L) = limt→∞ qt(L) and the time dependence of the infinite volume limit qt =
limL→∞ qt(L). It was also shown analytically, and confirmed numerically, that
the behavior of q∞(L) and qt are connected by a finite size scaling ansatz [34].

Consider first the behavior of qt(L) vs. t for several L, shown in Fig. 1. For
short and intermediate times, qt(L) appears to follow a single curve for all L,
until an L-dependent time scale when qt(L) separates from the main curve and
a plateau is reached. Ye et al. made the natural assumption that the single curve
represented the infinite volume behavior qt to good approximation. The long-
time behavior of qt is well-described by a power law of the form qt = dt−θh ,
with d = 0.62(3) and θh = 0.225(6) computed at the two largest sizes studied
(L = 400 and L = 500). The error bars are obtained by the bootstrap method.
Using other large sizes also, the heritability exponent describing the decay of the
overlap with time was found to be θh = 0.22 ± 0.02.
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q t
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)
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Fig. 1. qt(L) vs. t for several L and for quenches to T = 0. The plateau value decreases
from small to large L. From [34].

Next consider q∞(L), the finite size behavior of the absorbing value of qt(L),
shown in Fig. 2. Ye et al. found that the data were well fit by a power law of
the form q∞(L) = aL−b. Their best estimate of b, taking into account both
statistical and possible systematic errors, was 0.46 ± 0.02.

Summarizing, the main results are:

1. Heritability exponent: qt ∼ dt−θh and θh = 0.22 ± 0.02.
2. Size dependence: For finite L and T = 0, q∞(L) ∼ aL−b with b = 0.46 ± 0.02.
3. Finite size scaling considerations suggest that b = 2θh, consistent with the

numerically determined values and with the exact 1D values.
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Fig. 2. q∞(L) vs. L for quenches to T = 0. The solid line is the best power law fit for
sizes 20 to 500, and corresponds to q∞(L) ∼ L−0.46. From [34].

6 Random Ferromagnets and Spin Glasses in Finite
Dimensions

In [35], the nature vs. nurture question was studied in random Ising ferromagnets
and Edwards–Anderson (EA) spin glasses [15] in dimensions greater than one.
Both use the Hamiltonian (2), the difference being in the form of the probability
distribution from which the couplings Jxy are chosen. In both cases the Jxy are
i.i.d. random variables, but in the ferromagnetic case the couplings are chosen
from a continuous distribution supported on nonnegative real numbers, and in
the spin glass the support of the coupling distribution lies on both positive and
negative real numbers. Specifically, in [35] the coupling distribution for the EA
spin glass in d dimensions was taken to be a normal distribution with mean zero
and variance one, and for the random ferromagnet the distribution was taken to
be a one-sided Gaussian, in which each bond is chosen as the absolute value of
a standard Gaussian random variable (again with mean zero and variance one).

In Sect. 3, it was observed that both of these models belong to class F in
all dimensions; therefore, the proper quantity to study is the dynamical order
parameter qD. We showed in Sect. 4.1 that in any finite dimension, qD lies strictly
between 0 and 1. We also know that the random ferromagnet and spin glass are
identical (up to a trivial gauge transformation) in an infinite 1D chain, and that
qD = 1/2. As also discussed in Sect. 4.1, a (poor) lower bound for qD is provided
by the density of bully bonds ρb(d), which goes to 0 as d → ∞. A central question
posed in [35] is then: does qD(d) → 0 as dimension d → ∞?

Figure 3 shows numerically derived values for both systems in 2, 3, and 4
dimensions.

The results for the random ferromagnet are quite close to those of the
Edwards–Anderson model, especially in d = 2. This suggests the possibility that
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Fig. 3. The average twin overlap in the absorbing state for the largest systems size
q∞(Nmax) vs. dimension d for the Edwards–Anderson spin glass (red squares) and
random ferromagnet (black circles). From [35].

frustration, present in the spin glass but not the random ferromagnet, plays little
or no role in the nature vs. nurture problem for low dimensionality. This could
change, however, as dimension increases; indeed, Fig. 3 indicates that as dimen-
sion increases the difference between q∞(Nmax) for the spin glass and random
ferromagnet likewise increases, with qD(random ferromagnet)> qD(spin glass).

While qD monotonically decreases with dimension up to 4, limits on what can
be done numerically at this time preclude going to higher dimensions, and the
question of the behavior of qD(d) as d → ∞ remains open. Although the results
from [35] are consistent with the conjecture that qD(d) → 0 as d → ∞, they
don’t preclude other possibilities. One might then take a look at the behavior of
the random Curie–Weiss ferromagnet and the Sherrington–Kirkpatrick (SK) [27]
infinite-range spin glass to infer the high-dimensional behavior of the finite-
dimensional random ferromagnet and spin glass. As we will see in the next
section, however, the mean-field results are surprising, and so we will return to
this question there.

Before leaving this section, it is worth noting that several other features of
the nature vs. nurture problem besides qD were studied in [35]. These include
convergence rates of overlaps as the number of spins N increases and the mean
survival time τ(N) (i.e., the average number of spin flips per spin as a function
of system size and dimension). The reader is referred to [35] for a discussion of
these quantities. One further study is especially interesting and will be briefly
mentioned here, namely the spatial structure of the overlap in the final state. It
is natural to ask whether “like spins” (i.e., spins whose final state is the same)
percolate in the twin samples. Figure 4 shows the overlap configuration for a
typical pair of final states for the two-dimensional EA spin glass with L = 100.
From the figure it is indeed seen that like spins (shown in red) are well above
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the percolation threshold. (Note that there are no isolated singleton unlike spins
since those must be eliminated by the zero-temperature dynamics.)

Fig. 4. (color online). The overlap configuration for a typical pair of final states for the
two-dimensional Edwards–Anderson model with L = 100. Like spins percolate and are
shown in red while unlike spins are shown in black.

7 Mean-Field Models

We begin by examining the SK model, which is the spin glass whose N spins lie
on the nodes of the complete graph. Its Hamiltonian is

H = − 1√
N

∑

i<j

Jijσiσj . (4)

The couplings are again chosen from a normal distribution with mean zero and
variance one, and the rescaling factor N−1/2 ensures a sensible thermodynamic
limit of the energy and free energy per spin.

Figure 5 is a plot of q∞(N) as a function of N . While it is clear that q∞(N)
is decreasing with N , it again is not obvious whether q∞(N → ∞) is zero or
greater than zero.

The best fit implies that q∞(N → ∞) → 0, although slowly. However, a
different fit—not as good, but still reasonable—implies a nonzero limit. For
details, see [35]. Nevertheless, a heuristic argument presented in [35] suggests
that it is most reasonable to expect that indeed q∞(N → ∞) → 0. The main
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Fig. 5. Simulation results for q∞(N) vs.!N for the SK model. The curve is the highest
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, with a and b both close to 0.4. From [35].

idea is the following: it is known that the SK model has exponentially many
(in N) one-spin-flip metastable states [4], and moreover numerics indicate that
the number of spin flips grows linearly with N [35]. Given the O(N) distance
traveled by the SK model on the state space hypercube to find an absorbing
state, and given that these states have been shown to be uncorrelated [4], the
decay of q∞ → 0 as N → ∞ appears to be its most likely behavior.

Again, it is worth noting that several other dynamical behaviors of the
SK model were studied, including the median time for a system of N spins
to reach the absorbing state, the fraction of active spins (those that have not
finished flipping) as a function of time and system size, and the energy per spin
as a function of time. The reader is referred to [35] for a discussion of these
behaviors.

The evidence for q∞(N → ∞) → 0 as N → ∞ for the SK model may be taken
to imply that qD(d) → 0 for the EA spin glass as d → ∞. This is reasonable, and
even likely to be correct, but a cautionary note should be added: the behavior of
the Curie–Weiss random ferromagnet is completely different — in fact, for this
model q∞(N → ∞) → 1 as N → ∞ [35]! While presumably the information in
the initial state is completely lost in the SK model for large systems at long times,
for the random ferromagnet it’s completely retained. The profound difference
between nature and nurture for these models demonstrates that frustration plays
a centrally important role in infinite dimensions, and so it may play an important
role in high but finite dimensions as well.

It is easy to understand why the Curie–Weiss model behaves this way. Con-
sider first the uniform case, where all couplings have equal magnitude. A typical
initial condition will have an excess (of order

√
N) of spins in one state (say the

plus state) over the other, so every spin feels the same positive internal field,
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and this can only increase with time. Given the usual Glauber dynamics, it’s
clear that the final state will then be all plus, so the initial condition completely
determines the final configuration. The only initial conditions in which this will
not be true is that for which −1 ≤ ∑N

i=1 σi ≤ 1. But the contribution to q∞
from such configurations goes to zero (as N−1/2) as N → ∞.

One expects exactly the same behavior for the random Curie–Weiss model,
but the proof is considerably more difficult. As before, a typical initial spin
configuration will have O(

√
N) excess of plus or minus spins, but now the internal

fields acting on the spins will vary, and if the initial excess of spins is positive,
the internal fields on some spins could be negative. One therefore has to study
the distribution of the internal fields at each site, which at time zero has positive
mean. The main technical issue is to show that the fraction of sites with positive
internal field increases steadily with time.

A proof covering the case of the randomly diluted Curie–Weiss ferromagnet,
where the Jij ’s are chosen from Ber(p) for some fixed p ∈ (0, 1), showing that
again q∞(N → ∞) → 1 as N → ∞, appeared in [18]. The proof demonstrates
that after a time of order N1/2+ε, where ε > 0 is independent of N , every site has
positive internal field with probability going to one as N → ∞. At this point,
the dynamics monotonically leads to absorption into the all-plus state, so that
q∞ → 1 as N → ∞.

The proof further demonstrates that the final state of the system is one of
the two uniform states. One possibility is then that the random Curie-Weiss
ferromagnet possesses many metastable states (like finite-dimensional random
ferromagnets and spin glasses [24] or the SK model [4]), but that the dynamics
somehow avoids them. More likely, though, is the possibility that the random
Curie-Weiss model possesses no metastable states (in the sense that their number
falls to zero as N → ∞), or else too few for the system to find; i.e., the union of
their basins of attraction has zero measure in the N → ∞ limit. This problem
was studied in Wang et al. [33] and Song et al. [28] and it was found that such
metastable states do exist in these models, but their numbers are small and grow
slowly with N .

These results lead to a problem in interpreting the finite-dimensional random
ferromagnetic model: either qD(d) reaches a minimum at some finite d and then
increases to 1 as d → ∞, or else qD(d) falls to zero as conjectured and the infinite-
dimensional limit is singular for the nature vs. nurture problem in the random
ferromagnet as d → ∞. (There are other possibilities, of course, but these are the
most plausible alternatives.) In [35] a heuristic argument is presented in support
of the latter alternative, but the problem remains open in the absence of a more
detailed argument (or preferably, a proof).

Other models were studied as well in [35], in particular the random energy
model (REM) of Derrida [10,11], where it was again found that q∞ → 1. The
argument can again be found in [35] and will not be repeated here. What is
important to note is that all of these studies indicate strongly that two condi-
tions appear to be necessary (though perhaps not sufficient) in order for q∞ < 1.
The first is the presence of a large number of uncorrelated metastable states, so
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that the system has many possible final states whose overlap is small. This
condition is satisfied for the EA model and random ferromagnet in all finite
dimensions (although the metastable states retain some correlations, which pre-
sumably decrease to zero as d → ∞), as well as by the SK model and the REM.
The second, equally important, condition is that a finite system undergoes at
least O(N) spin flips before reaching the absorbing state, and correspondingly
for an infinite system, the average number of spin flips per site is strictly pos-
itive. This is the case for the EA model and random ferromagnet in all finite
dimensions, as well as for the SK model and both mean-field ferromagnets. Of
the mean-field models studied, only the SK model satisfies both conditions.

In contrast, the random Curie–Weiss ferromagnet and REM have q∞ → 1,
but for very different reasons. In the random Curie–Weiss ferromagnet, there are
O(N) steps in the random walk on the configuration space hypercube (with 2N

vertices) but (presumably) no metastable states to trap the walk before reaching
the absorbing uniform final state consistent with the initial configuration. The
REM, on the other hand, has many metastable states, but its random walk
travels only O(log N) steps before being trapped in a metastable state [20,35];
hence the overlap with the initial state approaches 1 as N → ∞.

8 Conclusion

This relatively brief review has touched on some of the central topics in the
nature vs. nurture problem, but omitted many interesting issues and results
which can be further pursued in the papers listed in the bibliography. There
are numerous outstanding questions and open problems, but perhaps the most
fundamental ones are the following.

1. Determine the dynamical class (I, F , or M) of the uniform Ising ferromagnet
in d ≥ 3. For those dimensions belonging to class I (or M), determine the
heritability exponent and study its behavior as a function of dimension. How
does it relate to the persistence exponent, particularly as dimension increases?

2. What is the behavior of qD(d) for the random ferromagnet and EA spin glass as
a function of dimension? Does qD(d) → 0 as d → ∞? The case of the random
ferromagnet is particularly interesting: does it begin to increase at some finite
d, or is the dynamical behavior singular at d = ∞? Answering this question
would shed light on the equally important question of the role of frustration in
finite dimensions: is it as important as it appears to be in infinite dimensions?

3. Prove (or disprove) that q∞(N → ∞) → 0 as N → ∞ for the SK model.
4. A particularly difficult problem is disordered systems with discrete coupling

distributions, most notably the ±J spin glass. This was shown in [17] to be in
class M in two dimensions. What is its dynamical behavior in higher dimen-
sions? The nature vs. nurture question has not been studied at all in this
model, nor more generally has a serious attempt been made to understand
how to approach this problem in the context of class-M models.



Nature vs. Nurture in Discrete Spin Dynamics 337

If nothing else, a major aim of this review is to provide the reader with
the sense that the nature vs. nurture approach to dynamics constitutes a set
of deep problems and rich phenomena whose explication can provide significant
illumination on the dynamical behavior of both ordered and disordered statistical
mechanical systems.
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